REVIEW PAPER
Uncovering the impact of nano- and microplastics on neurodegenerative diseases and strategies to mitigate their damage
More details
Hide details
1
Postgraduate Medical Internship, Dr. B. Hager Multi-Specialist District Hospital, Tarnowskie Góry, Poland
2
Postgraduate Medical Internship, Dr. B. Hager Multi-Specialist District Hospital in Tarnowskie Góry, Poland, Polska
3
Student Research Group at the Chair and Department of Pathomorphology, Faculty Medical Sciences, Medical University of Silesia, Zabrze, Poland
4
Department of Pathomorphology, Faculty of Medical Sciences, Zabrze, Medical University of Silesia, Zabrze, Poland
5
Collegium Medicum Named After Dr Władysław Biegański, Jan Długosz University, Częstochowa, Poland
6
Dentist, Eurodent Dental Center, Poland
These authors had equal contribution to this work
Corresponding author
Patrycja Ochman-Pasierbek
Lekarski Staż Podyplomowy, Wielospecjalistyczny Szpital Powiatowy S.A. w Tarnowskich Górach, Pyskowicka 47-51, 42-612, Tarnowskie Góry, Polska
KEYWORDS
TOPICS
ABSTRACT
Introduction and objective:
Microplastics (MPLs) are described as synthetic polymer particles with dimensions below 5 mm. Within this group, particles measuring less than 1 µm are referred to as nanoplastics (NPLs). These particles are extensively distributed in the environment and have been identified in human food sources as well as in both groundwater and tap water.
The aim of this review is to analyze the effect of micro- and nanoplastics on Alzheimer’s and Parkinson’s diseases. Furthermore, possible approaches to reducing the physiological effects of these particles are explored.
Abbreviated description of the state of knowledge:
Analysis suggests that the accumulation of nano- and microplastics may contribute to the progression of conditions such as Alzheimer’s and Parkinson’s diseases. Observed effects, such as neuroinflammation, mitochondrial dysfunction and blood-brain barrier disruption, suggest that neurotoxicity arises from multiple interacting pathways. Various bioactive substances have shown potential in reducing the neurotoxic impact of exposure to MNPs/NPLs. Melatonin, Fibroblast Growth Factor 1, and Camellia pollen have demonstrated promising effects in alleviating neurotoxicity. Furthermore, probiotics may play a role by restoring the natural balance of gut microbiota.
Summary:
The reviewed studies suggest that microplastics and nanoplastics may have a significant impact on neurodegenerative diseases, particularly Alzheimer’s and Parkinson’s disease. Further investigations into pharmacological treatments and therapeutic approaches to counteract the toxic effects of these pollutants on the human body are essential. In the long term, such research will improve patients› quality of life and support the development of preventive strategies.
REFERENCES (31)
1.
Microplastics in drinking-water. Geneva: World Health Organization; 2019. Licence: CC BY-NC-SA 3.0 IGO.
2.
Casella C, Sol D, Laca A, Díaz M. Microplastics in Sewage Sludge: A review. Environ Sci Pollut Res Int. 2023 May;30(23):63382–63415. doi: 10.1007/s11356-023-27151-6. Epub 2023 Apr 20. PMID: 37079238.
3.
Horvatits T, Tamminga M, Liu B, et al. Microplastics detected in cirrhotic liver tissue. EBioMedicine. 2022 Aug;82:104147. doi: 10.1016/j.ebiom.2022.104147. Epub 2022 Jul 11. PMID: 35835713; PMCID: PMC9386716.
4.
Casella C, Ballaz SJ. Genotoxic and neurotoxic potential of intracellular nanoplastics: A review. J Appl Toxicol. 2024 Nov; 44(11):1657–1678. doi: 10.1002/jat.4598. Epub 2024 Mar 17; PMID: 38494651.
5.
Zheng Y, Xu S, Liu J, Liu Z. The effects of micro- and nanoplastics on the central nervous system: A new threat to humanity? Toxicology. 2024 May; 504:153799. doi: 10.1016/j.tox.2024.153799. Epub 2024 Apr 11; PMID: 38608860.
6.
Leslie HA, van Velzen MJM, Brandsma SH, et al. Discovery and quantification of plastic particle pollution in human blood. Environ Int. 2022 May; 163:107199. doi: 10.1016/j.envint.2022.107199. Epub 2022 Mar 24; PMID: 35367073.
7.
Jenner LC, Rotchell JM, Bennett RT, et al. Detection of microplastics in human lung tissue using μFTIR spectroscopy. Sci Total Environ. 2022 Jul 20;831:154907. doi: 10.1016/j.scitotenv.2022.154907. Epub 2022 Mar 29; PMID: 35364151.
8.
Pironti C, Notarstefano V, Ricciardi M, et al. First Evidence of Microplastics in Human Urine, a Preliminary Study of Intake in the Human Body. Toxics. 2022 Dec 30;11(1):40. doi: 10.3390/toxics11010040. PMID: 36668766; PMCID: PMC9867291.
9.
Zhang N, Li YB, He HR, et al. You are what you eat: Microplastics in the feces of young men living in Beijing. Sci Total Environ. 2021 May 1;767:144345. doi: 10.1016/j.scitotenv.2020.144345. Epub 2020 Dec 31. PMID: 33434834.
10.
Ragusa A, Notarstefano V, Svelato A, et al. Raman Microspectroscopy Detection and Characterisation of Microplastics in Human Breastmilk. Polymers (Basel). 2022 Jun 30;14(13):2700. doi: 10.3390/polym14132700. PMID: 35808745; PMCID: PMC9269371.
11.
Braun T, Ehrlich L, Henrich W, et al. Detection of Microplastic in Human Placenta and Meconium in a Clinical Setting. Pharmaceutics. 2021 Jun 22;13(7):921. doi: 10.3390/pharmaceutics13070921. PMID: 34206212; PMCID: PMC8308544.
12.
Zhao Q, Zhu L, Weng J, et al. Detection and characterization of microplastics in the human testis and semen. Sci Total Environ. 2023 Jun 15;877:162713. doi: 10.1016/j.scitotenv.2023.162713. Epub 2023 Mar 21; PMID: 36948312.
13.
Bloem BR, Okun MS, Klein C. Parkinson’s disease. Lancet. 2021 Jun 12;397(10291):2284–2303. doi: 10.1016/S0140-6736(21)00218-X. Epub 2021 Apr 10. PMID: 33848468.
14.
Jeong A, Park SJ, Lee EJ, Kim KW. Nanoplastics exacerbate Parkinson’s disease symptoms in C. elegans and human cells. J Hazard Mater. 2024 Mar 5;465:133289. doi: 10.1016/j.jhazmat.2023.133289. Epub 2023 Dec 18; PMID: 38157817.
15.
Klann EM, Dissanayake U, Gurrala A, et al. The Gut-Brain Axis and Its Relation to Parkinson’s Disease: A Review. Front Aging Neurosci. 2022 Jan 7;13:782082. doi: 10.3389/fnagi.2021.782082. PMID: 35069178; PMCID: PMC8776990.
16.
Liang B, Deng Y, Zhong Y, et al. Gastrointestinal Incomplete Degradation Exacerbates Neurotoxic Effects of PLA Microplastics via Oligomer Nanoplastics Formation. Adv Sci (Weinh). 2024 Jul;11(28):e2401009. doi: 10.1002/advs.202401009. Epub 2024 May 15. PMID: 38751156; PMCID: PMC11267364.
17.
Liu Z, Sokratian A, Duda AM, et al. Anionic nanoplastic contaminants promote Parkinson›s disease-associated α-synuclein aggregation. Sci Adv. 2023 Nov 15;9(46):eadi8716. doi: 10.1126/sciadv.adi8716. Epub 2023 Nov 17. PMID: 37976362; PMCID: PMC10656074.
18.
Liang X, Andrikopoulos N, Tang H, et al. Nanoplastic Stimulates the Amyloidogenesis of Parkinson’s Alpha-Synuclein NACore. Small. 2024 Apr;20(14):e2308753. doi: 10.1002/smll.202308753. Epub 2023 Nov 21. PMID: 37988678; PMCID: PMC10994764.
19.
Ghosal S, Bag S, Bhowmik S. Insights into the Binding Interactions between Microplastics and Human α-Synuclein Protein by Multispectroscopic Investigations and Amyloidogenic Oligomer Formation. J Phys Chem Lett. 2024 Jun 27;15(25):6560–6567. doi: 10.1021/acs.jpclett.4c00731. Epub 2024 Jun 17. PMID: 38885454.
20.
Huang Y, Liang B, Li Z, et al. Polystyrene nanoplastic exposure induces excessive mitophagy by activating AMPK/ULK1 pathway in differentiated SH-SY5Y cells and dopaminergic neurons in vivo. Part Fibre Toxicol. 2023 Nov 22;20(1):44. doi: 10.1186/s12989-023-00556-4. PMID: 37993864; PMCID: PMC10664492.
21.
Liang B, Huang Y, Zhong Y, et al. Brain single-nucleus transcriptomics highlights that polystyrene nanoplastics potentially induce Parkinson’s disease-like neurodegeneration by causing energy metabolism disorders in mice. J Hazard Mater. 2022 May 15;430:128459. doi: 10.1016/j.jhazmat.2022.128459. Epub 2022 Feb 11. PMID: 35739658.
22.
Zhang XX, Tian Y, Wang ZT, et al. The Epidemiology of Alzheimer’s Disease Modifiable Risk Factors and Prevention. J Prev Alzheimers Dis. 2021;8(3):313–321. doi: 10.14283/jpad.2021.15. PMID: 34101789.
23.
Suresh S, Singh S A, Rushendran R, et al. Alzheimer’s disease: the role of extrinsic factors in its development, an investigation of the environmental enigma. Front Neurol. 2023 Dec 6;14:1303111. doi: 10.3389/fneur.2023.1303111. PMID: 38125832; PMCID: PMC10730937.
24.
Gou X, Fu Y, Li J, et al. Impact of nanoplastics on Alzheimer’s disease: Enhanced amyloid-β peptide aggregation and augmented neurotoxicity. J Hazard Mater. 2024 Mar 5;465:133518. doi: 10.1016/j.jhazmat.2024.133518. Epub 2024 Jan 12. PMID: 38228001.
25.
Gabbrielli S, Colnaghi L, Mazzuoli-Weber G, et al. In Silico Analysis of Nanoplastics› and β-amyloid Fibrils’ Interactions. Molecules. 2023 Jan 2;28(1):388. doi: 10.3390/molecules28010388. PMID: 36615582; PMCID: PMC9824275.
26.
Li C, Ma Y, Liu X, et al. Synergistic effect of polystyrene nanoplastics and contaminants on the promotion of insulin fibrillation. Ecotoxicol Environ Saf. 2021 May;214:112115. doi: 10.1016/j.ecoenv.2021.112115. Epub 2021 Mar 7. PMID: 33691242.
27.
Wang G, Lin Y, Shen H. Exposure to Polystyrene Microplastics Promotes the Progression of Cognitive Impairment in Alzheimer’s Disease: Association with Induction of Microglial Pyroptosis. Mol Neurobiol. 2024 Feb;61(2):900–907. doi: 10.1007/s12035-023-03625-z. Epub 2023 Sep 5. PMID: 37670159.
28.
Bazeli J, Banikazemi Z, Hamblin MR, Sharafati Chaleshtori R. Could probiotics protect against human toxicity caused by polystyrene nanoplastics and microplastics? Front Nutr. 2023 Jul 10;10:1186724. doi: 10.3389/fnut.2023.1186724. PMID: 37492595; PMCID: PMC10363603.
29.
Qiao J, Chen R, Wang M, et al. Perturbation of gut microbiota plays an important role in micro/nanoplastics-induced gut barrier dysfunction. Nanoscale. 2021 May 20;13(19):8806–8816. doi: 10.1039/d1nr00038a. PMID: 33904557.
30.
Bai H, Wu Y, Li H, et al. Cerebral neurotoxicity of amino-modified polystyrene nanoplastics in mice and the protective effects of functional food Camellia pollen. Sci Total Environ. 2024 Feb 20;912:169511. doi: 10.1016/j.scitotenv.2023.169511. Epub 2023 Dec 23. PMID: 38145676.
31.
Qian B, Wang CQ, Su Z, et al. FGF1 alleviates polystyrene nanoplastics-induced neuroinflammation through the suppression of lipophagy. Int J Biol Macromol. 2025 Apr;302:140531. doi: 10.1016/j.ijbiomac.2025.140531. Epub 2025 Jan 30. PMID: 39892539.