PL EN
PRACA ORYGINALNA
Arsen w środowisku człowieka
 
Więcej
Ukryj
1
Katedra i Klinika Chorób Wewnętrznych, Zawodowych i Nadciśnienia Tętniczego mUniwersytet Medyczny we Wrocławiu, Wrocław, Polska Department and Clinic of Internal and Occupational Medicine and Hypertension Wroclaw Medical University, Wroclaw, Poland
 
 
Autor do korespondencji
Anna Skoczyńska   

Klinika Chorób Wewnętrznych, Zawodowych i Nadciśnienia Tętniczego Uniwersytet Medyczny we Wrocławiu ul. Borowska 213, 50-556 Wrocław, Polska Tel.: +48 717 364 005
 
 
Med Srod. 2018;21(1):7-19
 
SŁOWA KLUCZOWE
STRESZCZENIE
W literaturze poświęconej toksykologii arsenu, mało danych dotyczy stężeń arsenu w powietrzu. Narażenie inhalacyjne na arsen jest związane głównie z obecnością stacjonarnych źródeł arsenu, takich jak pirometalurgiczne instalacje metali nieżelaznych, np. huty miedzi aktywne w przeszłości i obecnie. Narażenie drogą wziewną jest istotne u pracowników zawodowo narażonych na arsen i mało istotne w populacjach narażonych na arsen pozazawodowo. Huty miedzi są emiterami arsenu do powietrza w postaci pyłu zawieszonego i aerozoli. Wielkość cząsteczek związków arsenu w powietrzu zależy od stanu produktów huty (opary hutnicze zawierają cząstki małe o średnicy <1 μm, stałe odpady hutnicze zawierają cząstki większe o średnicy >1 μm). Dymy hutnicze są bardziej groźne dla organizmu, ponieważ małe cząstki łatwiej penetrują przez układ oddechowy i przedostają się do krwioobiegu; mają też większą biodostępność w następstwie większego stosunku powierzchni do objętości. W skali świata, główną drogą wchłaniania arsenu jest przewód pokarmowy. Podstawowym źródłem narażenia jest woda pitna, a największy stopień skażenia wody arsenem występuje w Australii, Nowej Zelandii, Tajlandii, Indiach, Argentynie i Meksyku. Arsen zawarty w żywności może być istotnym zagrożeniem, szczególnie dla niemowląt i małych dzieci. W ocenie wpływu arsenu na stan zdrowia potrzebna jest ocena całkowitej ekspozycji na arsen, w której droga inhalacyjna stanowi niewielką część.

In literature on arsenic toxicology, little is known about the concentration of arsenic in the air. Inhalation exposure to arsenic is mainly related to the presence of stationary sources of arsenic, such as pyrometallurgical nonferrous metal installations, e.g., copper smelters active in the past and present. Inhalation exposure is important in workers who are occupationally exposed to arsenic and not very important in a population environmentally exposed to this metalloid. Copper smelters emit arsenic into the air in the form of dust and aerosols. The size of the molecules of arsenic compounds in the air depends on the state of steelworks products (metallurgical vapors contain small particles with a diameter of <1 μm, and solid metallurgical wastes contain larger particles with a diameter of >1 μm). Metallurgical smokes are more dangerous to the body because small particles easily penetrate through the respiratory tract and enter the bloodstream. They also have a greater bioavailability following from a larger surface to volume ratio. In the world population, the main route of absorption of arsenic is the digestive tract. The main source of exposure is drinking water, and the highest degree of arsenic contamination occurs in Australia, New Zealand, Thailand, India, Argentina, and Mexico. Arsenic in food can be a significant risk, especially for infants and young children. The assessment of arsenic impact on human health requires the assessment of total exposure to arsenic, in which the inhalation route is a minor part.
 
REFERENCJE (58)
1.
International Agency for Research on Cancer. Some metals and metallic compounds. IARC Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Humans, Lyon, 1980; 23: 39-142.
 
2.
International Agency for Research on Cancer. Summaries and evaluations: Arsenic and arsenic compounds (Group 1). Lyon, International Agency for Research on Cancer(IARC Monographs on the Evaluation of Carcinogenic Risks to Humans). 1987; supplement 7: 100.
 
3.
WHO Regional Office for Europe, Copenhagen, Denmark, 2000 Air Quality Guidelines Second Edition, chapter 6.1: 125-128.
 
4.
Csavina J., Field J., Taylor M.P. i wsp.: A review on the importance of metals and metalloids in atmospheric dust and aerosol from mining operations. Sci Total Environ 2012; 433: 58-73.
 
5.
Bencko V.: Arsenic. In: Advances in Modern Environmental Toxicology Vol XI: Genotoxic and carcinogenic metals: environmental and occupational occurrence and exposure. Metals and their Compounds in the Environment (E. Fishbein, A. Furst, Ma Mehlman E. Merian, ed.) Princeton Scientific Publishing Co., Inc. Princeton NJ; 1987: 1-30.
 
6.
World Health Organization, Arsenic. Environmental Health Criteria, Geneva 1981, No. 18.
 
7.
Rahman M.: Arsenic and contamination of drinking-water in Bangladesh: A public-health perspective. J Health Popul Nutr 2002; 20: 193-197.
 
8.
Lokuge K.M., Kamalini M., Smith W. i wsp.: The effect of arsenic mitigation interventions on disease burden in Bangladesh. Environ Health Perspect 2004; 112: 1172-1177.
 
9.
Kociołek-Balawejder E., Ociński D.: Arsen w technice i środowisku. Wiad Chem 2005; 59: 353-386.
 
10.
Chilvers D.C., Peterson P.J.: Global Cycling of Arsenic. In: Lead, Mercury, Cadmium and Arsenic in the Environment Ed. T. C. Hutchinson and K. M. Meema. @ 1987SCOPE. Published by John Wiley & Sons Ltd. New York 1987; 17: 279-301.
 
11.
Thornton I.: Impacts of mining on the environment; some local, regional and global issues. J Int Assoc Geochem Cosmochem 1996; 11: 355-361.
 
12.
Porcella D.B., Ramel C., Jernelov A.: Global mercury pollution and the role of gold mining: an overview. Water Air Soil Pollut 1997; 97: 205-207.
 
13.
Lacerda L.D.: Global mercury emissions from gold and silver mining. Water Air Soil Pollut 1997; 97: 209–221.
 
14.
Chakradhar B.: Fugitive dust emissions from mining areas. J Environ Sys 2004; 31: 279-288.
 
15.
Neuman C.M., Boulton J.W., Sanderson S. i wsp.: Wind tunnel simulation of environmental controls on fugitive dust emissions from mine tailings. Atmos Environ 2009; 43: 520- 529.
 
16.
Brotons J.M., Diaz A.R., Sarria F.A.: Wind erosion on mining waste in southeast Spain. Land Degrad Dev 2010; 21:1 96- 209.
 
17.
Csavina J., Landazuri A., Wonaschutz A. i wsp.: Metal and Metalloid Contaminants in Atmospheric Aerosols from Mining Operations. Water Air Soil Pollut 2011; 221: 145-157.
 
18.
Agency for Toxic Substances and Disease Registry. Toxicological profile for arsenic. Atlanta, GA, US Department of Health and Human Services, 1991.
 
19.
Koren H.: Handbook of environmental health and safety. Vol. I. Chelsea, Levis Publishers, 1991.
 
20.
Inorganic emission from high-arsenic primary copper smelters. US Environmental Protection Agency, Office of Air Quality Planning and Standard Pollutant Assessment Branch, 1982, EPA contract number 68023513, Project Officer: W.D. Peters.
 
21.
Strzelec Ł., Niedźwiecka W.: Stan środowiska naturalnego w rejonie oddziaływania hut miedzi. Kierunki zmian. Med. Środ 2012; 15: 21-31.
 
22.
Hughes K., Meek M.E., Burnett R.: Inorganic arsenic: evaluation of risks to health from environmental exposure in Canada. Environ Carcinogenesis Ecotoxicol Rev 1994; 12: 145-159. http://dx.doi.org/10.1080/1059....
 
23.
Wadhwa S.K., Kazi T.G., Afridi H.I. i wsp.: Arsenic in water, food and cigarettes: a cancer risk to Pakistani population. J Environ Sci Health 2013;48:1776-82. doi: 10.1080/10934 529.2013.823332.
 
24.
Lubin J.H., Pottern L.M., Stone B.J.: Respiratory cancer in a cohort of copper smelter workers: results from more than 50 years of follow-up. Am J Epidemiol 2000;151:554-565.
 
25.
Sheehy J.W., Jones J.H.: Assessment of arsenic exposures and control in gallium arsenide production. Am Ind Hyg Assoc J 1993, 54: 61-69.
 
26.
IPCS (2001). Arsenic and arsenic compounds, 2nd ed. Geneva, World Health Organization, International Programme on Chemical Safety (Environmental Health Criteria 224; http://whqlibdoc.who.int/ehc/W...).
 
27.
Buchet J.P., Pauwels J., Lauwerys R.: Assessment of exposure to inorganic arsenic following ingestion of marine organisms by volunteers. Environ Res 1994; 66: 44-51.
 
28.
Hughes M.F.: Arsenic toxicity and potential mechanisms of action. Toxicol Lett 2002; 133: 1-16. http://dx.doi.org/10. 1016/S0378-4274(02)00084-X.
 
29.
Kulik-Kupka K., Koszowska A., Brończyk-Puzoń A. i wsp.: Arsen – trucizna czy lek? Med Pracy 2016; 67: 89-96.
 
30.
Rasheed H., Slack R., Kay P.: Human health risk assessment for arsenic: A critical review. Crit Rev Environ Sci Techn 2016, 46: 19-20, 1529-1583.
 
31.
Chakraborti D., Rahman M.M., Das B. i wsp.: Status of ground water arsenic contamination in Bangladesh: A 14-year study report. Water Res 2010; 44: 5789-5802.
 
32.
Krysiak A., Karczewska A.: Effects of soil flooding on arsenic mobility in soils in the area of former gold and arsenic mining in Zloty Stok. Roczniki Gleboznawcze 2011; 62: 240- 248.
 
33.
Signes-Pastor A.J., Carey M., Meharg A.A.: Inorganic arsenic in rice-based products for infants and young children. Food Chem 2016; 191: 128-134. doi:10.1016j.foodchem. 2014.11.078.
 
34.
Arsenic. Toxicological Overview. Public Health England. PHE publications gateway number: 2014790. December 2016:https://www.gov.uk/government/ uploads/system/ uploads/ attachment_data/file/576933/arsenic_toxicological_ overview.pdf.
 
35.
Kavock R., Dix D.: Toxicology as Implemented by the U.S.EPA: Providing High Throughput Decision Support Tools for Screening and Assessing Chemical Exposure, Hazard and Risk. J Toxicol Environ Health 2010; 13: 197-217.
 
36.
Dyrektywa Parlamentu Europejskiego i Rady Europy 2008/50/WE z dnia 21 maja 2008 r. w sprawie jakości powietrza i czystszego powietrza dla Europy.
 
37.
Priestly B.: Health Risk Assesment: SO2 and Arsenic for Copper Smelter Extension Project at Mount Isa Mines. Tox- Consult document ToxCr010515-RTF 2015; 1: 129-151.
 
38.
Naujokas M.F., Anderson B., Ahsan H. i wsp.: The Broad Scope of Health Effects from Chronic Arsenic Exposure: Update on a Worldwide Public Health Problem. Environ Health Perspect 2013; 121: 295-302.
 
39.
Mandal B.K., Suzuki K.T.: Arsenic round the world: a review. Talanta 2002; 58: 201-235.
 
40.
Agency for Toxic Substances and Disease Registry. Toxicological profile for arsenic. Atlanta, GA, US Department of Health and Human Services, 1992.
 
41.
Agency for Toxic Substances and Disease Registry (ATSDR), Toxicological Profile for Arsenic, US Department of Health and Human Services,: Atlanta, US, 2007.
 
42.
Agency for Toxic Substances and Disease Registry. Toxicological profile for arsenic. Atlanta, GA, US Department of Health and Human Services, 2014.
 
43.
Chung J.Y.,Yu S.D., Hong Y.S.: Environmental Source of Arsenic Exposure. J Prev Med Public Health 2014; 47: 253- 257. doi: 10.3961/jpmph.14.036.
 
44.
EPA ASARCO Hayden Plant: Site Overview http://yosemite. epa.gov/r9/sfund/r9sfdocw.nsf/ce6c60ee7382a473882571af007 af70d/3940634a9aec311e88257478006736ce!.
 
45.
Csavina J., Taylor M.P., Felix O. i wsp.: Size-resolved dust and aerosol contaminants associated with copper and lead smelting emissions: Implications for emission management and human health. Sci Total Environ 2014; 493: 750-756.
 
46.
Sorooshian A., Csavina J., Shingler T. i wsp.: Hygroscopic and chemical properties of aerosols collected near a copper smelter: implications for public and environmental health. Environ Sci Technol 2012; 4: 9473-9480. doi: 10.1021/es 302275k. Epub 2012 Aug 17.
 
47.
Binder S., Forney D., Kaye W. i wsp.: Arsenic Exposure in Children Living Near a Former Copper Smelter. Bull Environ Contam Toxicol 1987; 39: 114-121.
 
48.
Hwang Y.H., Bornchein R.L., Grote J. i wsp. Environmental Arsenic Exposure of Children around a Former Copper Smelter Site. Environ Res 1997; 72: 72–81.
 
49.
Tollestrup K., Frost F.J., Harter L.C. i wsp.: Mortality among Children Residing near the American Smelting and Refining Company (ASARCO) Copper Smelter in Ruston. Arch Environ Health 2003; 58: 683-691.
 
50.
Carrizalesa L., Razoa I., Te´llez-Hernandeza J.I. i wsp.: Exposure to arsenic and lead of children living near a coppersmelter in San Luis Potosi, Mexico: Importance of soil contamination for exposure of children. Environ Res 2006; 101: 1-10.
 
51.
Caldero H.J., Navarro M.E., Jimenez-Capdeville M.E. i wsp.: Exposure to Arsenic and Lead and Neuropsychological Development in Mexican Children Environ Res 2001; 85: 69-76.
 
52.
Jorquera H., Barraza F.: Source apportionment of PM and PM in a desert region in northern Chile.Sci Total Environ 2013; 444: 327-335.
 
53.
Steinmaus C., Ferreccio C., Acevedo J. i wsp.: High risks of lung disease associated with early-life and moderate life time arsenic exposure in northern Chile. Toxicol Appl Pharmacol 2016; 313: 10-15. doi: 10.1016/j.taap.2016.10.006. Epub 2016 Oct 8.
 
54.
Ferreccio C., Gonzalez C., Milosavjlevic V. i wsp.: Lung cancer and arsenic concentrations in drinking water in Chile. Epidemiology 2000; 11: 673-679.
 
55.
Ferreccio C., Sancha A.M.: Arsenic exposure and its impact on health in Chile. J Health Popul Nutr 2006; 24: 164-75.
 
56.
Sancha A.M., O’Ryan R.: Managing hazardous pollutants in Chile: arsenic. Rev Environ Contam Toxicol 2008; 196: 123-46.
 
57.
Vondracek V.: Concentration of 3,4-benzpyrene and arsenic compounds in the Prague atmosphere. Ceskoslovenska Hygiena 1963; 8: 333-339.
 
58.
Air quality in Europe - 2015 report. European Environment Agency. EEA Report No 5/2015http://www.eea.europa.eu/ publications/air-quality-in-europe-2015/download.
 
eISSN:2084-6312
ISSN:1505-7054
Journals System - logo
Scroll to top