PL EN
LIST DO REDAKCJI
Wzrastanie i środowisko
,
 
 
 
Więcej
Ukryj
1
Department of Kinesiology and Health Education University of Texas at Austin
 
2
Department of Kinesiology Tarleton State University, Stephenville, Texas
 
3
Visiting Professor University School of Physical Education, Wrocław
 
4
Departments of Mathematics, Physics, and Engineering and Academic Affairs Tarleton State University, Stephenville, Texas
 
5
Senior Research Scientist Medical Service, Dallas Veterans’ Administration Medical Centerm Dallas, Texas
 
 
Autor do korespondencji
Robert M. Malina   

Robert M. Malina 10735 FM 2668 Bay City, TX 77414 USA
 
 
Med Srod. 2012;15(2)
 
SŁOWA KLUCZOWE
STRESZCZENIE
Wiele czynników środowiskowych naturalnych, wytworzonych przez człowieka oraz społecznych może wpływać na na rozwój fizyczny, dojrzewanie i rozwój behawioralny, tj. zachowania się dzieci i młodzieży. Polepszenie warunków środowiskowych w ostatnim stuleciu przyczyniło się do pozytywnych sekularnych zmian we wzroście i dojrzewaniu. Ostatnio jednak postęp technologiczny wzmógł łatwość zachowań sedentarnych i przyczynił się do zmniejszenia aktywności fizycznej, co potencjalnie niesie negatywne skutki dla zdrowia młodzieży. Zanieczyszczenia przemysłowe mają również wpływ na zdrowie. Dzieci z podwyższonym poziomem ołowiu w krwi mają podwyższone ryzyko zaburzenia wzrostu i dojrzewania, a także uszkodzenia koordynacji motorycznej. Wpływ podwyższonego poziomu ołowiu we krwi na powstawanie zaburzeń motorycznych jest badany za pomocą wielu testów sprawności fizycznej, jest wyrażony przez wpływ ołowiu na wzrost i wielkość ciała. Podobnie emisje zanieczyszczeń z elektrowni węglowych i innych zakładów przemysłowych są związane z astmą, co ma również wpływ na aktywność fizyczną i sprawność młodzieży.

Many factors in the natural, man-made and social environments can influence the physical growth and maturation and behavioral development of children and adolescents. Improved environmental conditions over the past century or so have contributed to positive secular changes in growth and maturation. More recently, however, technological advances have increased opportunities for sedentary behaviors and contributed to reductions in physical activity, both of which have potentially negative implications for the health of youth. Pollutants associa-ted with some industries also have implications for health. Children with elevated lead levels are at increased risk for impaired growth and maturation and for impairments in fine motor coordination. The impact of elevated lead on gross motor coordination in several tests of physical fitness is mediated through the influence of lead on growth in body size. Similarly, emissions from coal-fired power plants and other industries are associated with asthma, which has implications for the physical activity and fitness of youth.
 
REFERENCJE (105)
1.
Malina R.M., Bouchard C., Bar-Or O.: Growth, Maturation, and Physical Activity, 2nd edition. Champaign, IL: Human Kinetics, 2004.
 
2.
McMillen I.C., Robinson J.S.: Developmental origins of the metabolic syndrome: Prediction, plasticity, and programming. Physiol Rev 2005; 85: 571-633.
 
3.
Waterland R.A., Michels K.B.: Epigenetic epidemiology of the developmental origins hypothesis. Ann Rev Nutr 2007; 27: 363-388.
 
4.
Kuzawa C.W.: Developmental origins of life history: Growth, productivity, and reproduction. Am J Hum Biol 2007; 19: 654-661.
 
5.
Armelagos G.J., Dewey J.R.: Evolutionary response to human infectious disease. Bioscience 1970; 20: 271-275.
 
6.
Cohen M.N., Armelagos G.J.: Paleopathology at the origins of agriculture: Editors summation. In M.N. Cohen, G.J. Armelagos, eds, Paleopathology at the Origins of Agriculture. New York: Academic Press, 1984; pp 585-601.
 
7.
Larsen C.A.: Biological changes in human populations with agriculture. Ann Rev Anthropol 1995; 24: 185-213.
 
8.
Haas J., Moreno-Black G., Frongillo E., et al: Altitude and infant growth in Bolivia: A longitudinal study. Am J Phys Anthropol 1982; 59: 252-262.
 
9.
Pawson I.G.: Growth and development at high altitude: A review of Ethiopian, Peruvian, and Nepalese studies. Proceedings of the Royal Society of London, Series B. Biological Sciences 1976; 194: 83-98,.
 
10.
Frisancho A.R.: Ecological interpretation of postnatal growth at high altitude. Seminaire du C. N. R. S., L’Homme et Son Environnement a Haute Altitude. Paris: CNRS, 1981; pp 87- 93.
 
11.
Gupta R., Basu A., Pawson I.G., et al: Altitude and human biology: A comparative study of Himalayan, Andean and Ethiopian data. In A. Basu, R. Gupta, eds, Human Biology of Asian Highland Populations in the Global Context. Calcutta: Indian Anthropological Society, 1989; pp 1-80.
 
12.
Pawson I., Huicho L.: Persistence of Growth Stunting in a Peruvian High Altitude Community, 1964–1999. Am J Hum Biol 2010; 22: 367-374.
 
13.
Tanner J.M.: Growth as a measure of the nutritional and hygienic status of a population. Horm Res 1992; 38 (suppl 1): 106-115.
 
14.
Bielicki T.: Physical growth as a measure of the economic well-being of populations: The twentieth century. In F. Falkner, J.M. Tanner, eds, Human Growth, Volume 3: Methodology, Genetic, and Nutritional Effects on Growth, 2nd edition. New York: Plenum, 1986; pp 283-305.
 
15.
Bielicki T.: Secular trends in growth: Human biologists’ contribution to the understanding of social change. In FE Johnston, B Zemel, PB Eveleth, eds, Human Growth in Context. London: Smith-Gordon, 1999; pp 303-311.
 
16.
Malina R.M.: Secular changes in size and maturity: Causes and effects. Mon Soc Res Child Dev 1979; 44 (serial no 179): 59-102.
 
17.
Malina R.M.: Research on secular trends in auxology. Anthropol Anzeiger 1990; 48: 209-227.
 
18.
Eveleth P.B., Tanner J.M.: Worldwide Variation in Human Growth, 2nd edition. Cambridge: Cambridge University Press, 1990.
 
19.
Bodzsar E.B., Susanne C., eds: Secular Growth Changes in Europe. Budapest: Eötvös University Press, 1998.
 
20.
Malina R.M., Peña Reyes M.E., Little B.B.: Auxology and social inequality in Oaxaca, Mexico: The state and community levels. In K. Ashizawa N. Cameron, eds, Human Growth in a Changing Lifestyle, London: Smith-Gordon, 2009; pp 85-98.
 
21.
Malina R.M., Peña Reyes M.E., Little B.B.: Consecuencias biólogicas de la desigualidad social: Ejemplos a nivel del estado y la comunidad en Oaxaca. In L. Marquez Morfin, ed, Los Niños, Actores Sociales Ignorados: Levantando el Velo, una Mirada al Pasado. Mexico, DF: Escuela Nacional de Antropologia e Historia, 2010; pp. 325-359.
 
22.
Peña Reyes M., Chavez G., Little B., Malina R.M.: Community well-being and growth status of indigenous school children in rural Oaxaca, southernm Mexico. Econ Hum Biol 2010; 8: 177-187.
 
23.
Malina R.M., Peña Reyes M.E., Bali Chavez G., Little B.B.: Secular change in height and weight of indigenous school children in Oaxaca, Mexico, between the 1970s and 2007. Ann Hum Biol 2011; 38: 691-701.
 
24.
Gonzalez de Mejia E., Craigmill A.L.: Transfer of lead from lead-glazed ceramics to food. Arch Environ Contam Toxicolm 1996; 31: 581-584.
 
25.
Ruiz Sandoval G.: Envenenamiento lento por el plomo en los habitants de Oaxaca. Gaceta Medica de Mexico 1878; 13 (21): 393-403.
 
26.
Hernández-Serrato M.I., Mendoza-Alvarado L.R., Rojas- Martínez R., et al: Factors associated with lead exposure in Oaxaca, Mexico. J Exposure Analysis Environ Epidemiol 2003; 13: 341-347.
 
27.
Azcona-Cruz M.I., Rothenberg S.J., Schnaas L., et al: Leadglazed ceramic ware and blood lead levels of children in the City of Oaxaca, Mexico. Arch Environ Health 2000; 55: 217-222.
 
28.
Handley M.A., Hall C., Sanford E., et al: Globalization, binational communities, and imported food risks: Results of an outbreak investigation of lead poisoning in Monterey County, California. Am J Pub Hlth 2007; 97: 900-906.
 
29.
Villalobos M., Merino-Sánchez C., Hall C., et al: Lead (II) detection and contamination routes in environmental sources, cookware and home-prepared foods from Zaimatlán, Oaxaca, Mexico. Sci Total Environ 2009; 407: 2836-2844.
 
30.
Hernández-Serrato M.I., Fortoul T.L., Rojas-Martínez R., et al: Lead blood concentrations and renal function evaluation: Study in an exposed Mexican population. Environ Res 2006; 100: 227-231.
 
31.
Baer R.D., Garcia de Alba J., Cueto L.M., et al: Lead based remedies for empacho: Patterns and consequences. Soc Sci Med 1989; 29: 1373-1379.
 
32.
Bose A., Vashistha K., O’Loughlin B.J.: Azarcón por empacho – another cause of lead toxicity. Pediatrics 1983; 72: 106- 108.
 
33.
Poma P.A.: A dangerous folk therapy. J Nat Med Assoc 1984; 76: 387-389.
 
34.
Texas Department of Health Services: www.dshs.state.texas/ region2-3/thestepslead. htm, accessed 17 May 2012.
 
35.
Zavaleta A., Salinas A.: Curandero Conversations: El Nińo Fidencio, Shamanism and Healing Traditions of the Borderlands. Bloomington, IN: Author House, 2009.
 
36.
U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, Division of Global Migration and Quarantine: Lead screening during the domestic medical examination for newly arrived refuges. 2012, available at http://www.cdc.gov/immigrantre... guidelines/lead-guidelines.html.
 
37.
Baselt R.C.: Disposition of Toxic Drugs and Chemicals in Man. Davis, C.A.: Biomedical Publications, 2002.
 
38.
Sachs H.K., Moel D.I.: Height and weight following lead poisoning in childhood. Am J Dis Child 1989; 143: 820- 822.
 
39.
Bachowski C., Kiedel Z.: KGHM Polska Miedź S.A. „Firma Przyjazna Środowisku”. In Z. Rudkowski, ed, Środowisko a Zdrowie Dziecka. Legnica, Poland: Fundacja na Rzecz Dzieci Zagłębia Miedziowego, 2004; pp 12-16.
 
40.
Andrews K.W., Savitz D.A., Hertz-Picciotto I.: Prenatal lead exposure in relation to gestational age and birth weight: a review of epidemiologic studies. Am J Ind Med 1994; 26: 13-32.
 
41.
Dietrich K.N., Kraft K.M., Bornschein R.L., et al: Low-level fetal lead exposure effect on neurobehavioral development in early infancy. Pediatrics 1987; 80: 721-730.
 
42.
McMichael A.J., Vimpani G.V., Robertson E.F., et al: The Port Pirie cohort study: maternal blood lead and pregnancy outcome. J Epidemiol Com Health 1986; 40: 18-25.
 
43.
Factor-Litvak P., Graziano J.H., Kline J.K., et al: A prospective study of birthweight and length of gestation in a population surrounding a lead smelter in Kosovo, Yugoslavia. Int J Epidemiol 1991; 20: 722-728.
 
44.
Ballew C., Khan L.K., Kaufman R., et al: Blood lead concentration and children’s anthropometric dimensions in the Third National Health and Nutritional Examination Survey (NHANES III), 1988-1994. J Pediatr 1999; 134: 623-630.
 
45.
Ignasiak Z., Sławińska T., Rożek K., et al: Lead and growth status of school children living in the copper basin of sout-hwestern Poland: Differential effects on bone growth. Ann Hum Biol 2006; 33: 401-414.
 
46.
Hicks D.G., O’Keffe R.J., Reynolds K.J., et al: Effects of lead on growth plate chondrocyte phenotype. Toxicol Appl Pharmacol 1996; 140: 164-172.
 
47.
Puzas J.E., Sickel M.J., Felter M.E.: Osteoblasts and chondrocytes are important target cells for the toxic effects of lead. Neurotoxicology 1992; 13: 783-788.
 
48.
Tanner J.M.: Growth at Adolescence, 2nd edition. Oxford: Blackwell Scientific Publications, 1962.
 
49.
Selevan S.G., Rice D.C., Hogan K.A., et al: Blood lead concentration and delayed puberty in girls. New Eng J Med 2003; 348: 1527-1536.
 
50.
Hauser R., Sergeyev O., Korrick S., et al: Association of blood lead levels with onset of puberty in Russian boys. Environ Health Perspect 2008; 116: 976-980.
 
51.
Williams P.L., Sergeyev O., LeeM.M., et al: Blood lead levels and delayed onset of puberty in a longitudinal study of Russian boys. Pediatrics 2011; 125: e1088-e1096.
 
52.
Humblet O., Williams P.L., Korrick S.A., et al.: Dioxin and polychlorinated biphenyl concentrations in mother’s serum and the timing of pubertal onset in sons. Epidemiology 2011; 22: 827-835.
 
53.
Wu T., Buck G.M., Mendola P.: Blood lead levels and sexual maturation in U.S. girls: The Third National Health and Nutrition Examination Survey, 1988-1994. Environ Health Persp 2003; 111: 737-741.
 
54.
Denham M., Schell L.M., Deane G., et al: Relationship of lead, mercury, mirex, dichlorodiphenyldichloroethylene, hexachlorobenzene, and polychlorinated biphenyls to timing of menarche among Akwewasne Mohawk girls. Pediatrics 2005; 115: e127-e-134.
 
55.
Sławińska T., Ignasiak Z., Little B.B., Malina R.M.: Shortterm secular variation in menarche and blood lead concentration in school girls in the Copper Basin of Southwestern Poland: 1995 and 2007. Am J Hum Biol 2012; 24: in press.
 
56.
Bielicki T., Hulanicka B.. Secular trend in stature and age at menarche in Poland. In E.B. Bodzsar, C. Susanne, eds, Secular Budapest: Eötvös University Press, 1998; pp 263-279.
 
57.
Konieczna W.: Badania nad stanen odżywienia młodzieży szkolnej. Warsaw: Instytut Żywienia i Żywnośći, 1997 (as cited by Bielicki, 1986).
 
58.
Charzewska J., Wajszczyk B., Chwojnowska Z., et al: Żywieniowe czynniki ryzyka przewlekłych chorób niezakaźnych w populacji dzieci i mlodzieży. In M. Jarosz, ed, Pol-Health: Otyłość, żywienie, aktywność fizyczna i zdrowie Polaków. Warsaw: Instytut Żywności i Żywienia, 2006; pp 149-218.
 
59.
Charzewska J., Ziemlański S., Lasecka E.: Menarcheal age, nutrition and socioeconomic development. Studies Phys Anthropol 1976; 2: 47-51.
 
60.
Ignasiak Z., Slawinski T., Malina R.M., Little B.B.: Blood lead concentrations in children from industrial areas in southwestern Poland in 1995 and 2007. Pol J Environ Studies 2011; 20: 503-508.
 
61.
Danker-Hopfe H., Hulanicka B.: Maturation of girls in lead polluted areas. In R. Hauspie, G. Lindgren, F. Falkner, eds, Essays on Auxology. Hertfordshire, UK: Castlemead Publications, 1995; pp 334-342.
 
62.
Canfield R.L., Henderson C.R., Cory-Slechta D.A., et al: Intellectual impairment in children with blood lead concentrations below 10 microg per deciliter. New Engl J Med 2003; 348: 1517-1526.
 
63.
Bellinger D.C.: Lead. Pediatrics 2004; 113: 1016-1022.
 
64.
Bellinger D.C.: Neurological and behavioral consequences of 692.
 
65.
Chiodo L.M., Jacobson S.W., Jacobson J.L.: Neurodevelopmental effects of postnatal lead exposure at very low levels. Neurotoxicol Teratol 2004; 26: 359–371.
 
66.
Lanphear B.P., Hornung R., Khoury J., et al: Low-level environmental lead exposure and children’s intellectual function: An international pooled analysis. Environ Health Persp 2005; 113: 894-899.
 
67.
American Academy of Pediatrics: AAP commends CDC for recognizing that for children there is no safe level of lead exposure, 2012. http://www.aap.org/en-us/about...- aap/aap-press-room/pages/AAP-Statement-CDCRevised- Lead-Exposure-Guidelines.aspx (accessed 21 May 2012).
 
68.
Dietrich K.N., Berger O.G., Succop P.A.: Lead exposure and the motor development status of urban six-year-old children in the Cincinnati Prospective Study. Pediarics 1993; 91: 301- 307.
 
69.
Winneke G., Altmann L., Kramer U., et al: Neurobehavioral and neurophysiological observations in six year old children with low lead levels in East and West Germany. Neurotoxicology 1994; 15: 705-714.
 
70.
Azcona-Cruz M.I., Rothenberg S.J., Schnaas-Arrieta L., et al: Niveles de plomo en sangre en niños de 8 a 10 años y su relacion con la alteracion en el sistema vasomotor y del equilibrio. Salud Publica de Mexico 2000; 42: 279-287.
 
71.
Needleman H.L., Schell A., Bellinger D., et al: The longterm effects of exposure to low doses of lead in childhood. N Engl J Med 1990; 322: 83-88.
 
72.
Muñoz H., Romieu I., Palazuelos E., et al: Blood lead level and neurobiological development among children living in Mexico City. Arch Environ Health 1993; 48: 132-139.
 
73.
Bhattacharya A., Shukla R., Bornschein R.L., et al: Postural disequilibrium quantification in children with chronic lead exposure: A pilot study. Neurotoxicology 1988; 9: 327-340.
 
74.
Bhattacharya A., Shukla R., Bornschein R.L., et al: Lead effects on postural balance of children. Environ Health Persp 1990; 89: 35-42.
 
75.
Osman K., Pawlas K., Schutz A., et al: Lead exposure and hearing deficits in children in Katowice, Poland. Environ Res 1999; 80, 1-8.
 
76.
Ignasiak Z., Sławińska T., Rożek K., et al: Blood lead level and physical fitness of school children in the copper basin of south-western Poland: Indirect effects through growth stunting. Ann Hum Biol 2007; 34: 329-343.
 
77.
Malina R.M.: Anthropometric correlates of strength and motor performance. Exerc Sports Sci Rev 1975; 3: 249-274.
 
78.
Malina R.M.: Anthropometry, strength and motor fitness. In S. Ulijaszek, C.G.N. Mascie-Taylor, eds, Anthropometry: The Individual and the Population. Cambridge: Cambridge University Press, 1994; pp 160-177.
 
79.
Przewęda R., Dobosz J.: Growth and Physical Fitness of Polish Youths. Academy of Physical Education, Studies and Monographs 53. Warsaw: Academy of Physical Education, 2005.
 
80.
Council of Europe: EUROFIT: European Test of Physical Fitness. Rome: Council of Europe, Committee for the Development of Sport, 1988.
 
81.
Malina R.M.: Physical activity and motor development/ performance in populations nutritionally at risk. In E Pollitt and P Amante, eds, Energy Intake and Activity. New York, NY: Alan R. Liss, 1984; pp 285-302.
 
82.
Malina R.M.: Familial factors in physical activity and performance of children and youth. J Hum Ecol (Special Issue for Human Development). Delhi, India: Kamla-Raj Enterprises, 1996; pp 131- 143.
 
83.
Sturm R. Childhood obesity – what can we learn from existingdata on societal trends, Part 1. Preventing Chronic Disease 2005; 2: 1-9, www.cdc.gov/pcd/issues/2005.
 
84.
Child Trends Data Bank (no date) After School Activities (available at www.childtrendsdatabank.org).
 
85.
Assistant Secretary for Planning and Evaluation: Education and Achievement, Enrollment/Attendance. Washington, DC: US Department of Health and Human Services, 1993, http://aspe.hhs.gov/hsp/trends... accessed 16 Septem-ber 2010.
 
86.
Barnett W.S., Epstein D.J., Friedman, A.H., et al: The State of Preschool 2009, State Preschool Yearbook, Executive Summary. Washington, DC: The National Institute for Early Education Research; 2009.
 
87.
National Council of Youth Sports: Report on Trends and Participation in Organized Youth Sports. Stuart, FL: National Council of Youth Sports, 2008.
 
88.
Malina R.M.: Children and adolescents in the sport culture: The overwhelming majority to the select few. J Exerc Sci Fitness 2009; 7 (Suppl): S1-S10.
 
89.
Malina R.M.: Early sports specialization: Roots, effectiveness, risks. Current Sports Med Rep 2010; 9: 364-371.
 
90.
Malina R.M., Little B.B.: Physical activity: The present in the context of the past. AmJ Hum Biol 2008; 20: 373-391.
 
91.
Tompkinson G.R., Olds T.S.: Secular changes in pediatric aerobic fitness test performance: The global picture. In G.R. Tomkinson, T.S. Olds, eds, Pediatric Fitness: Secular Trends and Geographic Variability. Basel: Karger, 2007; pp 46-66.
 
92.
Nishijima T., Kokudo S., Ohsawa S.: Changes over the years in physical and motor ability in Japanese youth in 1964-97. Int J Sport Health Sci 2003; 1: 164-170.
 
93.
Strong W.B., Malina R.M., Blimkie C.J.R., et al: Evidencebased physical activity for school youth. J Pediatr 2005; 146: 732-737.
 
94.
Physical Activity Guidelines Advisory Committee: Physical Activity Guidelines Advisory Committee Report 2008, Part G, Section 9: Youth. Washington, DC: Department of Health and Human Services, 2008; pp G9 1-33.
 
95.
Berkey C.A., Rockett H.R.H., Gillman M.W., et al: One-year changes in activity and inactivity among 10- to 15-year old boys and girls: Relationship to change in body mass index. Pediatrics 2003; 111: 836-843.
 
96.
Moore L.L., Gao D., Bradlee M.L., et al: Does early physical activity predict body fat change throughout childhood? Prev Med 2003; 37: 10-17.
 
97.
Mundt C.A., Baxter-Jones A.D.G., Whiting S.J., et al: Relationships of activity and sugar drink intake on fat mass development in youths. Med Sci Sports Exerc 2006; 38: 1245- 1254.
 
98.
Lockwood A.H., Welker-Hood K., Rauch M., Gottlieb B.: Coal’s Assault on Human Health: A Report from Physicians for Social Responsibility. Washington, DC: Physicians for Social Responsibility, 2009, available at www.psr.org/coalreport.
 
99.
Children_at_Risk-Texas (no date) Texas state profile of exposure to coal-fired power plants, available at www.catf.us/publications/factsheets/Children_at_Risk- Texas.pdf).
 
100.
Shukla R., Bornschein R.L., Dietrich K.N., et al: Fetal and infant lead exposure: Effects on growth in stature. Pediatrics 1989; 84: 604-612.
 
101.
Shukla R., Dietrich K.N., Bornschein R.L., et al: Lead exposure and growth in the early preschool child: a follow-up report from the Cincinnati Lead Study. Pediatrics 1991; 88: 886-892.
 
102.
Little B.B., Snell L.M., Johnston W.L., et al: Blood lead levels and growth of children. Am J Hum Biol 1990; 2: 265- 269.
 
103.
Little, B.B., S. Spalding, B. Walsh et al.: Blood lead levels and growth status among African-American and Hispanic children in Dallas, Texas – 1980 and 2002: Dallas Lead Project II. Ann Hum Biol 2009; 36: 331-341.
 
104.
Kafourou A., Touloumi G., Makropoulos V., et al.: Effects of lead on the somatic growth of children. Arch Environ Health 1997; 52: 377-383.
 
105.
Schwartz J., Angle C., Pitcher H.: Relationship betweenchildhood blood lead level and stature. Pediatrics 1986; 77: 281-288.
 
eISSN:2084-6312
ISSN:1505-7054
Journals System - logo
Scroll to top