PL EN
REVIEW PAPER
Figure from article: The impact of climate...
 
KEYWORDS
TOPICS
ABSTRACT
Introduction and objective:
Pollen can reflect changing climate. In Europe, pollen types are increasing season duration and an earlier onset is being experiencing. The reason for this includes a lack of change in some monthly meteorological variables or change in land-use, such as grassland being replaced by urban areas or woodland. The review presents the background of climate change, impact of the pollen season, and duration of symptoms in patients with allergic diseases.

Brief description of the state of knowledge:
Climate change has important effects related to environmental pollution and the origin of hypersensitivity and pollen allergy. This causes an increase in the production of pollens and an increase in their allergenic properties. Climate change can affect plant growth which can be altered so that the new pollens produced are modified and affect health. As a consequence, an increase in the incidence of allergic diseases caused by pollens is expected in the medium and long-term.

Summary:
The education of the population in preventing environmental pollution and climate change is a matter of urgency worldwide. Adaptation and mitigation measures can be undertaken to limit the impact of climate change on the pollution induced by chemical agents and pollen. Mitigation addresses the causes of climate change, whereas adaptation addresses its impact. Adaptation will be not able to eliminate all negative impacts and mitigation is crucial to limit changes in the climate system. Extreme weather phenomena, such as thunderstorms, trigger exacerbations of asthma with an important socio-economic impact. Allergic patients should be educated about the risk of asthma exacerbation during a thunderstorm or pollen season.
REFERENCES (32)
1.
D’Amato G, Cecchi L, Bonini S, et al. Allergenic pollen and pollen allergy in Europe. Allergy. 2007;62:976–990.
 
2.
Samoliński B, Raciborski F, Lipiec A, et al. Epidemiologia Chorób Alergicznych w Polsce (ECAP). Alergologia Polska – Polish Journal of Allergology. 2014;1(1):10–18. doi:org/10.1016/j.alergo. 2014.03.008.
 
3.
Czarnobilska E, Mazur M. Wpływ zanieczyszczenia środowiska na występowanie chorób alergicznych u dzieci i młodzieży szkolnej w Krakowie. Lek Woj. 2018;94:32–39.
 
4.
Samel-Kowalik P, Lipiec A, Tomaszewska A, et al. Występowanie alergii i astmy w Polsce – badanie ECAP. Gazeta Farmaceutyczna. 2019;3:32–34.
 
5.
Sedghy F, Varasteh AR, Sankian M, et al. Interaction between air pollution and pollen grains: the role on rising trends in allergy. Rep Biochem Mol Biol. 2018;6(92):219–224.
 
6.
Watts N, Amann M, Arnell N, et al. The 2018 report of the Lancet Countdown on health and climate change: shaping the health of nations for centuries to come. Lancet. 2018;392(10163):2479–2514.
 
7.
Smith KR, Woodward A, Campbell-Lendrum D, et al. Chapter 11. Human health: impacts, adaptation, and co-benefits. In: Climate Change 2014: Impacts, Adaptation, and Vulnerability Part A: Global and Sectoral Aspects Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge. UK:Cambridge University Press. 2014;709–754.
 
8.
Watts N, Amann M, Arnell N, et al. The 2018 report of the Lancet Countdown on health and climate change: shaping the health of nations for centuries to come. Lancet. 2018;392(10163):2479–2514. doi:10.1016/S0140.
 
9.
D’Amato G, Chong-Neto HJ, Monge O, et al. The effects of climate change on respiratory allergy and asthma induced by pollen and mold allergens. Allergy. 2020;75(9):2219–2228. doi:10.1111/all.14476.
 
10.
Cecchi L, D’Amato G, Annesi-Maesano I. External exposome and allergic respiratory and skin diseases. J Allergy Clin Immunol. 2018;141(3):846–57. doi:10.1016/j.jaci.2018.01.016.
 
11.
Haines A, Ebi K. The Imperative for Climate Action to Protect Health. N Engl J Med. 2019;380(3):263–73. doi:10.1056/NEJMra1807873.
 
12.
Singh A, Kumar P. Climate change and allergic diseases: An overview. Front Allergy 2022;3;3:964987.
 
13.
Solomon CG, LaRocque RC. Climate Change — A Health Emergency. N Engl J Med. 2019;380(3):209–11. doi:10.1056/NEJMp1817067.
 
14.
D’Amato G, Vitale C, Lanza M, et al. Climate change, air pollution, and allergic respiratory diseases: an update. Curr Opin Allergy Clin Immunol. 2016; Oct;16(5):434 40. doi: 10.1097/ACI.0000000000000301.
 
15.
Sorokin Y, Zelikova TJ, Blumenthal D, et al. Seasonally contrasting responses of evapotranspiration to warming and elevated CO2 in a semiarid grassland. Ecohydrol. 2017;10(7):e1880.
 
16.
Cherrez-Ojeda I, Ramon GD, Barrionuevo LB, et al. Prevalence of skin sensitivity to temperate and subtropical grasses in patients with seasonal allergic rhinitis in Bahía Blanca, Argentina. J Allergy Clin Immunol. 2018;141(2):AB128.
 
17.
Augustine DJ, Derner JD, Milchunas D, et al. Grazing moderates increases in C3 grass abundance over seven decades across a soil texture gradient in shortgrass steppe. J Veget Sci. 2017;28(3):562–72.
 
18.
Thien F, Beggs PJ, Csutoros D, et al. The Melbourne epidemic thunderstorm asthma event 2016: an investigation of environmental triggers, effects on health services, and patient risk factors. Lancet Planet Health. 2018;2:255–263.
 
19.
Harun NS, Lachapelle P, Douglas J. Thunderstorm-triggered asthma: what we know so far. J Asthma Allergy. 2019;6:101–108. https://doi.org/10.2147/JAA.S1....
 
20.
Idrose N, Dharmage S, Lowe A, et al. A systematic review of the role of grass pollen and fungi in thunderstorm asthma. Environ Res. 2020;181:108911.
 
21.
Lake I, Jones N, Agnew M, et al. Climate Change and Future Pollen Allergy in Europe. Environ Health Perspect. 2017;125(3):385–391. doi:10.1289/EHP173.
 
22.
D’Amato G, Annesi-Maesano I, Cecchi L, et al. Latest news on relationship between thunderstorms and respiratory allergy, severe asthma, and deaths for asthma. Allergy. 2019;74(1):9–11. doi:10.1111/all.13616.
 
23.
Eguiluz-Gracia I, Mathioudakis AG, Bartel S, et al. The need for clean air: the way air pollution and climate change affect allergic rhinitis and asthma. Allergy. 2020;75(9):2170–2184. doi:10.1111/all.14177.
 
24.
Hamaoui-Laguel L, Vautard R, Liu L, et al. Effects of climate change and seed dispersal on airborne ragweed pollen loads in Europe [Letter]. Nat Clim Chang. 2015;5:766–771.
 
25.
Makra L, Matyasovszky I, Tusnady G, et al. A temporally and spatially explicit, data-driven estimation of airborne ragweed pollen concentrations across Europe. Sci Total Environ. 2023;20:905:167095. doi:10.1016/j.scitotenv.2023.167095.
 
26.
National Oceanic and Atmospheric Administration. Global carbon dioxide growth in 2018 reached 4th highest in record. Accessed August 17, 2019.
 
27.
United States Environmental Protection Agency (EPA). Overview of Greenhouse Gases. Accessed August 17, 2019.
 
28.
El Kelish A, Zhao F, Heller W, et al. Ragweed (Ambrosia artemisiifolia) pollen allergenicity: SuperSAGE transcriptomic analysis upon elevated CO2 and drought stress. BMC Plant Biology. 2014;27:14–176. doi:10.1186/1471-2229-14-176.
 
29.
Ebi K, Vanos J, Baldwin J, et al. Extreme Weather and Climate Change: Population Health and Health System Implications. Annu Rev Public Health. 2021;1(42):293–315. doi:10.1146/annurev-publhealth-012420-105026.
 
30.
Puc M, Szczypiór-Piasecka K, Piotrowska-Weryszko K, et al. Record values of ragweed pollen count in Poland in 2024. Alergoprofil. 2025;1(21):31–36.
 
31.
Weryszko-Chmielewska E, Woźniak A, Weryszko-Piotrowska K, et al. Ambrosia pollen season in selected cities in Poland in 2018. Alergoprofil. 2018;4(18):111–116.
 
32.
Smith M, Skjøth CA, Myszkowska D, et al. Long-range transport of Ambrosia pollen to Poland. Agric Forest Meteorol. 2008;148:1402–1411.
 
eISSN:2084-6312
ISSN:1505-7054
Journals System - logo
Scroll to top