PL EN
PRACA ORYGINALNA
Ocena jakości powietrza wewnątrz budynku szkolnego. Studium przypadku z Wrocławia
 
Więcej
Ukryj
1
Politechnika Wrocławska, Wydział inżynierii Środowiska. Dziekan: dr hab. inż. J. Danielewicz, prof. PWR
 
2
Instytut Meteorologii i Gospodarki Wodnej, Państwowy Instytut Badawczy. Dyrektor: dr inż. P. Łagodzki
 
 
Autor do korespondencji
Anna Zwoździak   

Politechnika Wrocławska Wydział inżynierii Środowiska Wybrzeże Wyspiańskiego 27, 50-370 Wrocław
 
 
Med Srod. 2017;20(3):36-43
 
SŁOWA KLUCZOWE
STRESZCZENIE
W celu osiągnięcia dobrej jakości powietrza w szkole, gdzie dzieci spędzają ok. 6–8 godzin dziennie i znalezienia rozwiązania, by ją poprawić, należy dokładnie rozpoznać problem zanieczyszczenia powietrza wewnętrznego. Dzieci są jedną z bardziej wrażliwych grup, wśród których obserwuje się szkodliwe oddziaływanie pyłów zawieszonych na zdrowie. Nasze badania skupiły się na charakterystyce zanieczyszczenia powietrza różnymi frakcjami pyłu zawieszonego (tj. PM1,0, PM2,5, PM10) wewnątrz (W) i na zewnątrz (Z) budynku szkoły gimnazjalnej w centrum Wrocławia. Do poboru próbek pyłu PM1,0, PM2,5 i PM10, w latach 2009/2010, zostały wykorzystane impaktory typu Harvard. Zimą, w 90 dni pomiarowych, stwierdzono przekroczenia zalecanych przez WHO średnich dobowych stężeń PM10 i PM2,5. Frakcja PM2,5 wewnątrz szkoły oraz frakcja PM10, zarówno zimą, jak i latem miały swoje źródła w samej szkole, o czym świadczył stosunek W/Z = 1,2 dla średnich dobowych stężeń PM2,5, i odpowiednio 1,3 (zimą) oraz 2,0 (latem) dla PM10. Jednak, stężenia PM2,5 and PM10 w czasie trwania zajęć szkolnych (8-godzinne średnie) były znacznie wyższe (odpowiednio: 2,0 i 2,5- krotnie zimą oraz 4,1 i 5,6-krotnie latem). Stężenia PM1 były porównywalne wewnątrz i na zewnątrz szkoły. Choć są to badania wstępne, to jednak powinny zmotywować do dalszych prac skupionych na ocenie relacji między stężeniem pyłów drobnych w szkole a reakcją układu oddechowego dzieci.

In order to achieve good air quality in schools, where children spend ca. 6–8 hours per day, and to find solutions for improving it, indoor pollution has to be accurately evaluated. Children are among the groups most vulnerable to the adverse effects of PM. Our study focuses on the characterization of different fractions of PM (PM1.0, PM2.5, PM10) measured inside and outside the building of a secondary school in Wroclaw, Poland, located in the centre of the city. PM1.0, PM2.5, and PM10 samples, from indoor (I) and outdoor (O) air, were collected using Harvard cascade impactors during the years 2009/2010. The study revealed that on 90% of days in the wintertime, 24h indoor PM2.5 and PM10 concentrations were higher than the WHO air quality guidance values for ambient air. The PM2.5 fraction found inside the school in winter and the PM10 fraction both in winter and summer resulted mostly from indoor rather than outdoor sources, as shown by the I/O ratio of 1.2 for 24-hour mean of PM2.5 and 1.3, and 2.0 for 24-hour mean of PM10 in winter and summer, respectively. However, PM2.5 and PM10 concentrations during teaching hours (8-hour mean) were much higher than outdoors (2.0 and 2.5 times in winter and 4.1 and 5.6 times in summer, respectively). PM1 concentrations reached comparable levels indoors and outdoors. These data can be considered as preliminary; however, they may act as a stimulus for future studies aiming to estimate the effect of indoor PM concentrations on the respiratory system in schoolchildren
FINANSOWANIE
Praca została sfinansowana ze środków Narodowego Centrum Nauki w ramach projektu nr N304 067937 pt. Identyfikacja wpływu zanieczyszczenia powietrza na funkcje układu oddechowego u dzieci w wieku szkolnym.
 
REFERENCJE (30)
1.
Pope C.A., Burnett R.T., Thun M.J. i wsp.: Lung cancer, cardiopulmanory mortality and long-term exposure to fine particulate air pollution. JAMA 2002; 287: 1132-1141.
 
2.
Rabczenko D., Wojtyniak B., Wysocki M. i wsp.: Krótkookresowy wpływ zanieczyszczeń powietrza atmosferycznego dwutlenkiem siarki, pyłami zawieszonymi i dwutlenkiem azotu na umieralność mieszkańców miast w Polsce. Przegl Epidemiol 2005; 59: 969-979.
 
3.
Grahame T.J.,Schlesinger R.B.: Evaluating the health risk from secondary sulfates in Eastern North American regional ambient air particulate matter. Inhal Toxicol 2005; 17, 15- 27.
 
4.
Ebelt, S.T., Wilson, E.W., Brauer, M.:Exposure to ambient and nonambient components of particulate matter: a comparison of health effects. Epidemiology 2005; 16: 396-405.
 
5.
Neuberger M., Rabczenko D., Moshammer H.:Extended effects of air pollution on cardiopulmonary mortality in Vienna. Atmos Environ 2007; 41: 8549-8556.
 
6.
WHO: Indoor air Pollution and Lower Respiratory Tract Infections in Children, Geneva 2007a, Switzerland.
 
7.
Liang W.M., Wei H.Y., Kuo H.W.: Association between daily mortality from respiratory and cardiovascular diseases and air pollution in Taiwan. Environ Res 2009; 109: 51-58.
 
8.
Ashmore M.R., Dimitroulopoulou C.: Personal exposure of children to air pollution. Atmos Environ 2009; 43:128-141.
 
9.
Chen, C., Zhao, B.: Review of relationship between indoor and outdoor particles: I/O ratio, infiltration factor and penetration factor. Atmos Environ 2011; 45: 275-288.
 
10.
Smargiassi A., Goldberg M.S., Wheeler A.J.i wsp.: Association between personal exposure to air pollutants and lung function tests and cardiovascular idices among children with asthma living near an industrial complex and petroleum rafineries. Environ Res 2014; 132:38-45.
 
11.
WHO: Air quality guidelines for particulate matter, ozone, nitrogen dioxide and sulfur dioxide. Global Update 2005. Geneva 2006.
 
12.
Dyrektywa Parlamentu Europejskiego i Rady 2008/50/WE z dnia 21 maja 2008 w sprawie jakości powietrza i czystszego powietrza dla Europy, (Dz. Urz. UE L 152 z dnia 11.02.2008).
 
13.
Weichenthal, S., Dufresene, A., Infante-Rivard, C.: Indoor ultra-fine particles and childhood asthma: exploring a potential concern. Indoor Air 2007;17: 81-91.
 
14.
Lin L., Chen H., Su T. i wsp.: The effects of indoor particle exposure on blood pressure and heart rate among young adults: An air filtration-based intervention study. Atmos Environ 2011; 45: 5540-5544.
 
15.
Li S., Williams G., Jalaludin B. i wsp.: Panel studies of air pollution on children’s lung function and respiratory symptoms: A literature review. J Asthma 2012; 49: 895-910.
 
16.
Tsobod E., Annesi Maesano I., Carrer P. i wsp.: SINPHONIE School Indoor Pollution & Health Observatory network in Europe; Final report, Luxenburg European Union 2014 doi: 10.2788/99220.
 
17.
Wallace, L.A.: Indoor Particles: a review. J Air Waste Manag Assoc 1996; 46: 98-127.
 
18.
Horemens B., Worobiec A., Buczyńska A. i wsp.: Airborne particulate master and BTEX in Office environments, J Environ Monitor 2008; 10: 867-876.
 
19.
Viana M., Díez S., C. Reche C.: Indoor and outdoor sources and infiltration processes of PM1 and black carbon in an urban environment. Atmos Environ 2011; 45: 6359-6367.
 
20.
Hulin M., Caillaud D., Annesi-Maesano I.: Indoor air pollution and childhood asthma: variations between urban and rural areas, Indoor Air 2010; 20: 502-514.
 
21.
Fromme H., Twardell D., Dietrich S. i wsp.: Particulate matte in the indoor aor of classrooms – exploratory results from Munich and surrounding area. Atmos Environ 2007; 41: 854-866.
 
22.
Fromme H., Diemer J., Dietrich S. i wsp.: Chemical and morphological properties of particulate matter (PM10, PM2.5) in school classrooms and outdoor air. Atmos Environ 2008; 42: 6597-6605.
 
23.
Janssen N.A.H., Holk G., Brunekreef B. i wsp.: Mass concentration and elemental composition of PM10 in classrooms. Occup Environ Med 1999; 56: 482-487.
 
24.
Stranger M., Potgieter-Vermaak S.S., Van Grieken R.:Characterization of indoor air quality in primary schools in Antwerp, Belgium. Indoor Air 2008; 18: 454-463.
 
25.
McConnell R., Islam T., Shankardass K. i wsp.:, Childhood incident asthma and traffic-related air pollution at home and school, Environ Health Perspect 2010: 117; 1021-1026.
 
26.
Nitschke M., Pilotto L.S., Attewell R.G. i wsp.: A cohort study of indoor nitrogen dioxide and house dust mite exposure in asthmatic children. J Occup Environ Med 2006: 48; 462-469.
 
27.
Ligman B., Casey M., Braganza E. i wsp: Airborne particular matter within school environments in the United States. w: Proceedings of Indoor Air 1999, vol. 4. CRC Ltd 255-260.
 
28.
Wu J., Lurmann F., Winer A. i wsp.: Development of an individual exposure model for application to the Southern California Children’s Health Study. Atmos Environ 2005:39; 259-273.
 
29.
Mejia J.F., Low Hoy S., Mengersen K. i wsp.: Methodology for assessing exposure and impacts of air pollutants in school children: Data collection, analysis and health effects – A literature review. Atmos Environ 2011: 45; 813-823.
 
30.
Zwoździak A., Sowka I., Worobiec A. i wsp.: The contribution of outdoor particulate matter (PM1, PM2.5, PM10) to school indoor environment. Indoor Built Environ 05/2014; doi:10.1177/1420326X14534093.
 
eISSN:2084-6312
ISSN:1505-7054
Journals System - logo
Scroll to top