PRACA ORYGINALNA
Rola wapnia w nasieniu ludzkim i jego związek z układem antyoksydacyjnym
 
Więcej
Ukryj
1
Śląski Uniwersytet Medyczny w Katowicach Wydział Lekarski z Oddziałem Lekarsko-Dentystycznym w Zabrzu Zakład Biochemii Ogólnej Katedry Biochemii w Zabrzu. Kierownik Katedry i Zakładu: prof. dr hab. n. med. E. Birkner
2
Śląski Uniwersytet Medyczny w Katowicach Wydział Lekarski z Oddziałem Lekarsko-Dentystycznym w Zabrzu Katedra i Oddział Kliniczny Ginekologii, Położnictwa i Ginekologii Onkologicznej w Bytomiu Śląski Uniwersytet Medyczny w Katowicach. Kierownik Katedry: prof. dr hab. n. med. A. Olejek
 
Med Środow. 2014;17(1):34–50
SŁOWA KLUCZOWE
STRESZCZENIE ARTYKUŁU
Wstęp:
Ludzki ejakulat składa się z plemników i plazmy nasiennej w skład której wchodzą związki organiczne i nieorganiczne w tym biopierwiastki. Wapń jest niezbędny w procesie hiperaktywacji i kapacytacji komórki plemnikowej. Oba te procesy powodują wytwarzanie reaktywnych form tlenu czego efektem jest indukcja systemu antyoksydacyjnego.

Materiał i metody:
Materiał badany stanowiło nasienie pobrane od 61 mężczyzn u których średnia wieku wynosiła 33 lata, u których nie stwierdzono patologii nasienia. Badaną populację podzielono na dwie grupy o niskiej i wysokiej zawartości wapnia w plazmie nasienia. Wbadanym materiale oznaczono parametry seminologiczne, dysmutazę ponadtlenkową, katalazę, reduktazę glutationową, grupy sulfhydrylowe, dialdehyd malonowy, lipofuscynę, bilirubinę, kwas moczowy, albuminę oraz całkowitą zdolność oksydacyjną.

Wyniki:
U osób o wysokim poziomie wapnia w plazmie nasiennej (średnia 38,3 mg/dl) stwierdzono istotnie statystycznie wyższy odsetek plemników o ruchu postępowym nielinearnym, wyższą aktywność izoenzymu manganowego dysmutazy ponadtlenkowej, reduktazy glutationowej, stężenie witamin A i E, bilirubiny i albumin w porównaniu z osobami o niskim poziomie wapnia (średnia 22,0 mg/dl). Ruchliwość plemników, aktywność tych enzymów oraz stężenie wymienionych antyoksydantów dodatnio korelowało (p*0,05) z poziomem wapnia (R40,26–0,64). Niższe wartości stężeń lipofuscyny obserwowano w grupie z wysokim poziomem wapnia oraz ujemną korelację między Ca2& a lipofuscyną (R410,36, p*0,05).

Wnioski:
Wniniejszej pracy wykazano korzystny wpływ wapnia na ruchliwość plemników w fizjologicznym nasieniu oraz stymulację układu antyoksydacyjnego pod wpływem wysokiego stężenia tego pierwiastka w plazmie nasienia u mężczyzn z prawidłowym spermiogramem


Introduction:
The human ejaculate consists of sperm and seminal plasma consisting of organic and inorganic compounds including micronutrients. Calcium is essential in the process of cell hyperactivation and sperm capacitation. Both these processes result in the generation of reactive oxygen species resulting in the induction of antioxidant system.

Material and Methods:
Semen samples were collected from 61 men of an average age of 33 years with no sperm pathology. The study population was divided into two groups with low and high concentrations of calcium in the seminal plasma. Analysis of the collected samples included: sperm morphology, superoxide dismutase, catalase, glutathione reductase, sulphydryl groups, malonaldialdehyde, lipofuscin, vitamin A and E, bilirubin, uric acid, albumin, and total oxidant status.

Results:
In individuals with high level of calcium in the seminal plasma (mean 38.3 mg/dl) were found significant increased nonlinear motility, higher activity of mangane isoenzyme superoxide dismutase, glutathione reductase, concentration of vitamin A and E, bilirubin and albumin in comparison with individuals with lower level of calcium(mean 22.0 mg/dl). Nonlinear motility, the activity of enzymes, and concentration of antioxidants, as mentioned above, positively correlated (p*0,05) with calcium level (R40.26–0.64). Lower concentration of lipofuscin was observed in group with high level of calcium and negative correlation between Ca2& and lipofuscin (R410.36, p*0.05).

Conclusions:
The present study showed calcium beneficial effect on motility of spermatozoa in physiological semen and stimulation of antioxidant systems by high concentrations of this element in sperm plasma in men with normal spermiogram.

 
REFERENCJE (23)
1.
Salsabili N, Mehrsai A.R., Jalaie S.: Concentration of blood and seminal plasma elements and their relationships with semen parameters in men with spinal cord injury. Andrologia 2009;41: 24-28.
 
2.
Semczuk M., Kurpisz M.: Andrologia, Wydawnictwo Lekarskie PZWL, Warszawa 1998.
 
3.
Kasperczyk A., Kasperczyk S., Horak S. i wsp.: Assessment of semen function and lipid peroxidation among lead exposed men. Toxicol Appl Pharmacol 2008; 228: 378-384.
 
4.
Hong C.Y., Chiang B.N., Turner P.: Calcium ion is the key regulator of human sperm function. Lancet 1984;2:1449 – 1451.
 
5.
Skandhan K.P.; Review on copper in male reproduction and contraception. Rev Fr Gynecol Obstet 1992; 87: 594–598.
 
6.
Breitbart H.: Intracellular calcium regulation in sperm capacitation and acrosomal reaction. Mol Cell Endocrinol 2002; 187: 139–144.
 
7.
Suarez S.S.: Hyperactivated motility in sperm. J Androl, 1996; 17: 331–335.
 
8.
Storey B.: Biochemistry of the induction and prevention of lipoperoxidative damage in human spermatozoa. Mol Hum Reprod 1997; 3: 203-213.
 
9.
Terman A, Brunk UT.: Lipofuscin. Int J Biochem Cell Biol 2004; 36: 1400-1404.
 
10.
Fraczek M., Kurpisz M.: The redox system in human semen and peroxidative damage of spermatozoa. Postepy Hig Med Dosw 2005; 59: 523-534.
 
11.
WHO. Laboratory manual for the examination of human semen V ed. Cambridge University Press 2010.
 
12.
Oyanagui Y.: Reevaluation of assay methods and establishment of kit for superoxide dismutase activity. Anal Biochem 1984; 142: 290-296.
 
13.
Ohkawa H., Ohishi N., Yagi K.: Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 1979; 95: 351-358.
 
14.
Johansson L.H., Borg L.A.: A spectrophotometric method for determination of catalase activity in small tissue samples Anal Biochem. 1988; 174: 331-336.
 
15.
Koster J.F., Biemond P., Swaak A.J.: Intracellular and extracellular sulphydryl levels in rheumatoid arthritis. Ann Rheum Dis 1986; 45: 44-46.
 
16.
Richterich R. Chemia kliniczna. Warszawa PZWL; 1971.
 
17.
Erel O.: A new automated colorimetric method for measuring total oxidant status. Clin Bioch 2005; 38: 1103–1111.
 
18.
Jain S.K.: In vivo externalization of phosphatidylserine and phosphatidylethanolamine in the membrane bilayer and hypercoagulability by the lipid peroxidation of erythrocytes in rats. J Clin Invest 1985; 76: 281-286.
 
19.
Shearer M.J., Lim C.K.: HPLC of Small Molecules-a Practical Approach Oxford: IRL Press 1986.
 
20.
Aitken R., Harkiss D., Buckingham D. Relationship between ironcatalysed lipid peroxidation potential and human sperm function. J. Reprod. Fertil. 1993; 98: 257–265.
 
21.
Rivlin J, Mendel J, Rubinstein S i wsp. Role of hydrogen peroxide in sperm capacitation and acrosome reaction. Biol Reprod. 2004; 70: 518-522.
 
22.
Prien SD, Lox CD, Messer RH, i wsp. Seminal concentrations of total and ionized calcium from men with normal and decreased motility. Fertil Steril. 1990; 54: 171-182.
 
23.
Wai Y, Wonga B, Flikc G i wsp. The impact of calcium, magnesium, zinc, and copper in blood and seminal plasma on semen parameters in men. Reprod Toxicol. 2001; 51: 131– 136.
 
eISSN:2084-6312
ISSN:1505-7054