Proinflammatory effects of tobacco smoke xenobiotics
More details
Hide details
Katedra i Zakład Biomedycznych Analiz Środowiskowych, Uniwersytet Medyczny im. Piastów Śląskich we Wrocławiu. Kierownik Katedry i Zakładu: prof. dr hab. H. Milnerowicz. Rektor Uniwersytetu Medycznego im. Piastów Śląskich we Wrocławiu: prof. dr hab. M. Ziętek
Milena Ściskalska   

Uniwersytet Medyczny im. Piastów Śląskich we Wrocławiu ul. Borowska 211, 50-556 Wrocław tel: (71) 784 01 78
Med Srod. 2014;17(1):69–76
Tobacco smoke capability of stimulating local and systemic inflammation is considered to be a pathogenetic mechanism leading to the development of pulmonary and extrapulmonary diseases. The study was aimed at reviewing information concerning the pathomechanisms for the pro-inflammatory effect of tobacco smoke components, which lead to initiating cascade processes resulting in tissue damage. A retained lungs macrophages contributing to the development of local inflammatory response by the release of cytokines, proteases and radicals were shown. Cytokine release induced by tobacco smoke with intracellular signaling pathways, mainly NF-κB activation, is associated with this. Developing inflammatory process as a driving mechanism for further oxidants production was shown, which caused the intensification of inflammatory response. Tobacco smoke components stimulating cyclooxygenase-2 expression and an increase in prostaglandins and acute phase proteins synthesis were demonstrated. It was shown that most of the changes inflammatory mediators remains still high even when the damaging agent is removed. It is believed that aldehydes present in the environment that are components of the smoke can make a covalent bond with nucleophilic amino groups of lysine, arginine or histidine in proteins. They can cause radicals formation and weaken an intracellular antioxidant mechanisms. The glutathione depletion leading to change in cells redox status was demonstrated. Anti-inflammatory mechanisms impairments and intensification of neutrophils myeloperoxidase release causing vascular homeostasis disruption were shown. Myeloperoxidase can cause proteins oxidation and lipid peroxidation. Lipids peroxidation and increased acute phase proteins level associated with smoking, may exert a direct effect promoting the occurrence of cardiovascular diseases and play a role in pathogenesis of atherosclerosis and endothelial damage.
Streibel T., Mitschke S., Adam T., et al.: Time-resolved analysis of the emission of sidestream smoke (SSS) from cigarettes during smoking by photo ionisation/time-of-flight mass spectrometry (PI-TOFMS): towards a better description of environmental tobacco smoke. Anal Bioanal Chem 2013; 405: 7071-7082.
Thielen A., Klus H., Muller L.: Tobacco smoke: unraveling a controversial subject. Exp Toxicol Path 2008; 60: 141-147.
Dube M. F., Green C. R.: Methods of collection of smoke for analytical purposes. Rec Adv Tob Sci 1982; 8: 42-102.
Raupach T., Schaefer K., Konstantinides S., Andreas S.: Secondhand smoke as an acute threat for the cardiovascular system: a change in paradigm. Eur. Heart J., 2006; 27; 386-392.
Ghosh M., Ionita P.: Investigation of free radicals in cigarette mainstream smoke. 3rd Biennial Meeting of the Society for Free Radical Research, 2007; 49-55.
Said S. I.: Proinflammatory and antiinflammatory peptides. Taylor & Francis, 1998; 2, 9, 26-28, 36.
Yanbaeva D. G., Dentener M. A., Creutzberg E. C., et al.: Systemic effects of smoking. Chest 2007; 131: 1557-1566.
Tamimi A., Serdarevic D., Hanania N. A.: The effects of cigarette smoke on airway inflammation in asthma and COPD: therapeutic implications. Respir Med 2012; 106: 319-328.
Barnes P. J., Shapiro S. D., Pauwels R. A.: Chronic obstructive pulmonary disease: molecular and cellular mechanisms. Eur Respir J 2003; 22: 672–688.
Barnes J., Drazen J. M., Rennard S., et al.: Asthma and COPD. Academic Press, San Diego 2002; 4-6, 99, 105, 350.
Amin K., Ekberg-Jansson A., Loefdahl C. G., et al.: Relationship between inflammatory cells and structural changes in the lungs of asymptomatic and never smokers: a biopsy study. Thorax 2003; 58: 135-142.
Nelson S., Martin T. R.: Cytokines in pulmonary disease. Infection and inflammation. Informa Healthcare 2000; 2; 19- 21.
Demirjian L., Abboud R. T., Li H., et al.: Acute effect of cigarette smoke on TNF-alpha release by macrophages mediated through the ERK1/2 pathway. Biochim Biophys Acta 2006; 1762: 592-597.
Park Y. S., Kim J., Misonou Y., et al.: Acrolein induces cyclooxygenase- 2 and prostaglandin production in human umbilical vein endothelial cells: roles of p38 MAP Kinase. Arterioscler Thromb Vasc Biol 2007; 27: 1319-1325.
Finkelstein E. I., Nardini M., Van Der Vliet A.: Inhibition of neutrophil apoptosis by acrolein: a mechanism of tobaccorelated lung disease? Am J Physiol Lung Cell Mol Physiol 2001; 281: 732–739.
Nguyen H., Finkelstein E., Reznick A,. et al.: Cigarette smoke impairs neutrophil respiratory burst activation by aldehydeinduced thiol modifications. Toxicology 2001; 160: 207-217.
Yang B. C., Pan X. J., Yang Z. H., et al.: Crotonaldehyde induces apoptosis in alveolar macrophages through intracellular calcium, mitochondria and p53 signaling pathways. J Toxicol Sci 2013; 38: 225-235.
Chadwick D., Goode J., Novartis Foundation: Acetaldehyderelated pathology: bridging the trans-disciplinary divide. John Wiley, 2007, 103–104.
Wyatt T. A., Kharbanda K. K., Tuma D. J., et al.: Malonianaldehyde- acetaldehyde-adducted bovine serum albumin activates protein kinase C and stimulates interleukin-8 release in bovine bronchial epithelial cells. Alcohol 2001; 25: 159–166.
Kirkham P. A., Spooner G., Ffoulkes-Jones C., et al.: Cigarette smoke triggers macrophage adhesion and activation: role of lipid peroxidation products and scavenger receptor. Free Radic Biol Med 2003; 35: 697–710.
Kehrer J. P., Biswal S. S.: The molecular effects of acrolein. J Toxicol Sci 2000; 57: 6–15.
Kirkham P., Rahman I.: Oxidative stress in astma and COPD: antioxidants as a therapeutic strategy. Pharmacol Ther 2006; 111: 476–494.
Reddy S., Finkelstein E.I., Wong P. S. Y., et al.: Identification of gluthathione modifications by cigarette smoke. Free Radic Biol Med 2002; 33: 1490–1498.
Luo J., Shi R.: Acrolein induces oxidative stress in brain mitochondria. Neurochem Int 2005; 46: 243–252.
Tsay J. J., Tchou-Wong K. M., Greenberg A. K., et al.: Aryl hydrocarbon receptor and lung cancer. Anticancer Res 2013; 33: 1247-1256.
Kitamura M., Kasai A.: Cigarette smoke as a trigger for the dioxin receptor-mediated signaling pathway. Cancer Lett 2007; 252: 184–194.
Savouret J. F., Berdeaux A., Casper R. F.: The aryl hydrocarbon receptor and its xenobiotic ligands: a fundamental trigger for cardiovascular disease. Nutr Metab Cardiovasc Dis 2003; 13: 104-113.
Podechard N., Lecrureur V., Ferrec E., et al.: Interleukin-8 induction by the environmental contaminant benzo(a)pyrene is aryl hydrocarbon receptor-dependent and leads to lung inflammation. Toxicol Lett 2008; 177: 130–137.
Ding J., Wu K., Zhang D., et al.: Activation of both nuclear factor of activated T cells and inhibitor of nuclear factor-kB kinase
Yan Z., Subbaramaiah K., Camilli T., et al.: Benzo[a]pyrene induces the transcription of cyclooxygenase-2 in vascular.
smooth muscle cells. Evidence for the involvement of extracellular signal-regulated kinase and NF-kappaB. J Biol Chem 2000; 275: 4949–4955.
Mills C. M.: Cigarette smoking, cutaneous immunity and inflammatory response. Arch Deramtol 1997; 133: 823-825.
Sudheer A. R., Muthukumaran S., Devipiriya N., et al.: Influence of ferulic acid on nicotine-induced lipid peroxidation, DNA damage and inflammation in experimental rats as compared to N-acetylcysteine. Toxicology 2008; 243: 317–329.
Kalpana C., Sudheer A. R., Rajasekharan K. N., et al.: Comparative effects of curcumin and its synthetic analogue on tissue lipid peroxidation and antioxidant status during nicotine- induced toxicity. Singapore Med J 2007; 48: 124–130.
Rudolph T. K., Rudolph V., Baldus S.: Contribution of myeloperoxidase to smoking-dependent vascular inflammation. Proc Am Thorac Soc 2008; 5: 820–823.
Lau P., Li L., Merched A. J., et al.: Nicotine induces proinflammatory responses in macrophages and the aorta leading to acceleration of atherosclerosis in low-density lipoprotein receptor (-/-) mice. Arterioscler Thromb Vasc Biol 2006; 26: 143–149.