PL EN
PRACA POGLĄDOWA
Rola mikrobiomu w procesie nowotworzenia i progresji raka oraz jego potencjał bioterapeutyczny – przegląd aktualnej wiedzy
 
Więcej
Ukryj
1
Stażysta, Uniwersytecki Szpital Kliniczny nr. 4 w Lublinie, Polska
 
 
Autor do korespondencji
Michał Siwek   

Stażysta, Uniwersytecki Szpital Kliniczny nr. 4 w Lublinie, ul. Doktora Kazimierza Jaczewskiego 8, 20-090, Lublin, Polska
 
 
 
SŁOWA KLUCZOWE
DZIEDZINY
STRESZCZENIE
Wprowadzenie i cel:
Choroby nowotworowe stanowią jedno z największych wyzwań współczesnej medycyny, co potwierdzają globalne statystyki. Trudności terapeutyczne, takie jak oporność na leczenie i złożoność mikrośrodowiska guza, skłaniają do poszukiwania nowych strategii w zakresie terapii. W tym kontekście rośnie zainteresowanie mikrobiomem człowieka jako czynnikiem wpływającym na progresję i odpowiedź na leczenie nowotworów. Celem pracy jest przedstawienie stanu wiedzy na temat wpływu mikrobiomu na rozwój nowotworów oraz omówienie mechanizmów tych interakcji.

Opis stanu wiedzy:
Mikrobiom człowieka odgrywa kluczową rolę w onkologii za sprawą złożonych mechanizmów. Badania wskazują na dwojaki charakter jego oddziaływania. Z jednej strony, dysbioza i obecność patogennych bakterii, jak Fusobacterium nucleatum w raku jelita grubego czy Helicobacter pylori w raku żołądka, sprzyjają kancerogenezie przez indukcję stanu zapalnego, produkcję genotoksyn i supresję odpowiedzi immunologicznej. Z drugiej strony, bakterie takie jak Akkermansia muciniphila czy Bifidobacterium wykazują działanie ochronne m.in. dzięki temu, że przyczyniają się do tworzenia krótkołańcuchowych kwasów tłuszczowych i modulują układ odpornościowy. Obecność korzystnych mikroorganizmów powiązana jest z lepszą odpowiedzią na immunoterapię (np. inhibitory PD-1) w leczeniu raka płuc czy czerniaka. Zależności te dotyczą także nowotworów skóry, w przypadku których Staphylococcus epidermidis może działać ochronnie, a Staphylococcus aureus – prokancerogennie.

Podsumowanie:
Skład mikrobioty może służyć jako biomarker prognostyczny odpowiedzi na leczenie onkologiczne. Celowana modulacja mikrobiomu – za pomocą diety, probiotyków, prebiotyków czy przeszczepienia mikrobioty kałowej (FMT) – staje się obiecującą strategią wspomagającą standardowe terapie przeciwnowotworowe, torując drogę dla rozwoju bardziej spersonalizowanej onkologii.

Introduction and objective:
Cancer is one of the greatest challenges of modern medicine. Therapeutic difficulties, such as treatment resistance and the complexity of the tumour microenvironment are driving the search for new strategies. There is growing interest in the human microbiome as a factor influencing cancer progression and response to treatment. The aim of this study is to present the state of knowledge on the effect of microbiome on cancer development and to discuss the mechanisms of these interactions.

Brief description of the state of knowledge:
Human microbiome plays a key role in oncology through complex mechanisms. Research points to the dual nature of its interactions. On the one hand, dysbiosis and the presence of pathogenic bacteria, such as Fusobacterium nucleatum in colorectal cancer, or Helicobacter pylori in gastric cancer, promote carcinogenesis through induction of inflammation, production of genotoxins and suppression of the immune response. On the other hand, bacteria such as Akkermansia muciniphila or Bifidobacterium show protective effects through, among other things, short-chain fatty acids and modulation of the immune system. The presence of beneficial microorganisms has been linked to a better response to immunotherapy (e.g. PD-1 inhibitors) in the treatment of lung cancer or melanoma. These relationships also apply to skin cancer, where Staphylococcus epidermidis may have a protective effect, and Staphylococcus aureus a procancerogenic effect.

Summary:
The composition of the microbiota can serve as a predictive biomarker of response to cancer treatment. Targeted modulation of the microbiome – through diet, probiotics, prebiotics or faecal microbiota transplantation (FMT) – is emerging as a promising strategy to support standard cancer therapies, paving the way for the development of more personalised oncology.
REFERENCJE (30)
1.
Siegel RL, Kratzer TB, Giaquinto AN, et al. Cancer statistics, 2025. CA Cancer J Clin. 2025;75(1):10–45.
 
2.
International Agency for Research on Cancer. Global Cancer Observatory. https://gco.iarc.fr/en (access: 2025.06.07).
 
3.
World Health Organization. Global cancer burden growing, amidst mounting need for services. https://www.who.int/news/item/... (access: 2025.06.07).
 
4.
Wawrety W, Kedziora A. Role of bacteria in cancers and their therapeutic potential: Review of current knowledge. Iran J Basic Med Sci. 2025;28(3):273–282.
 
5.
Hou K, Wu ZX, Chen XY, et al. Microbiota in health and diseases. Sig Transduct Target Ther. 2022;7:135.
 
6.
Ghosh S, Pramanik S. Structural diversity, functional aspects and future therapeutic applications of human gut microbiome. Arch Microbiol. 2021;203:5281–5308.
 
7.
Rinninella E, Raoul P, Cintoni M, et al. What is the Healthy Gut Microbiota Composition? A Changing Ecosystem across Age, Environment, Diet, and Diseases. Microorganisms. 2019;7(1):14.
 
8.
Pan X, Raaijmakers JM, Carrión VJ. Importance of Bacteroidetes in host–microbe interactions and ecosystem functioning. Trends Microbiol. 2023;31(9):959–971.
 
9.
Stącel M. Wybrane doniesienia dotyczące postępu w terapiach komórkowych zaprezentowane podczas 37. Międzynarodowego Kongresu zorganizowanego przez International Society of Blood Transfusion (ISBT) w Kuala Lumpur, 4–8 czerwca 2022 roku. J Transfusion Med Hemostasis. 2024;17(1):33–37.
 
10.
Chmielewska I, Szczyrek M. Wpływ mikroflory jelitowej na skuteczność immunoterapii z wykorzystaniem przeciwciał przeciwko immunologicznym punktom kontroli — opis przypadku i przegląd literatury. Onkol Prakt Klin Edu. 2018;4(4):275–281.
 
11.
Derosa L, Routy B, Thomas AM, et al. Intestinal Akkermansia muciniphila predicts clinical response to PD-1 blockade in patients with advanced non-small-cell lung cancer. Nature Med. 2022;28(2):315–324.
 
12.
Feitelson MA, Arzumanyan A, Medhat A, et al. Short-chain fatty acids in cancer pathogenesis. Cancer Metastasis Rev. 2023;42:677–698.
 
13.
Garavaglia B, Sgrignani J, Trovato B, et al. Butyrate inhibits colorectal cancer cell proliferation through autophagy degradation of β-Catenin regardless of APC and β-Catenin mutational status. Biomedicines. 2022;10(5):1131.
 
14.
Dougherty MW, Jobin C. Intestinal bacteria and colorectal cancer: etiology and treatment. Gut Microbes. 2023;15(1):2185028.
 
15.
Yu T, Guo F, Yu Y, et al. Fusobacterium nucleatum promotes chemoresistance to colorectal cancer by modulating autophagy. Cell. 2017;170(3):548–563.e16.
 
16.
Rubinstein MR, Wang X, Liu W, et al. Fusobacterium nucleatum promotes colorectal carcinogenesis by modulating E-cadherin/β-catenin signaling via its FadA adhesin. Cell Host Microbe. 2013;14(2):195–206.
 
17.
Purcell RV, Pearson J, Aitchison A, et al. Colonization with enterotoxigenic Bacteroides fragilis is associated with early-stage colorectal neoplasia. PLoS ONE. 2017;12(2):e0171602.
 
18.
Li Y, Wang Z, Wang Y. Oral microbiota and gastric cancer: recent highlights and knowledge gaps. Front Cell Infect Microbiol. 2023;13:11332296.
 
19.
Zhao H, Zhang Y, Wang Y, et al. The human oral–nasopharynx microbiome as a risk screening tool for nasopharyngeal carcinoma. Front Cell Infect Microbiol. 2022;12:1013920.
 
20.
Nakatsuji T, Chen TH, Narala S, et al. A commensal strain of Staphylococcus epidermidis protects against skin neoplasia. Sci Adv. 2018;4(2).
 
21.
Derosa L, Routy B, Fidelle M, et al. Gut Akkermansia muciniphila predicts response to PD-1 blockade in non-small-cell lung cancer. Cell Rep. 2022;39(3):110711.
 
22.
Nawal H. Exploring the role of the gut microbiome in modulating response to anti-PD-1 immunotherapy in melanoma patients. Inter J Clin Biochem Res. 2025;11(4):223–228.
 
23.
Wang G, Yu Y, Wang Y-Z, et al. Role of SCFAs in gut microbiome and glycolysis for colorectal cancer therapy. J Cellular Physiol. 2019;234(10):17023–17049.
 
24.
Zhao Y, Wang C, Goel A. Role of gut microbiota in epigenetic regulation of colorectal Cancer. Biochim Biophys Acta Rev Cancer. 2021 Jan;1875(1):188490.
 
25.
Nikulina LM, Solovyova GA. The role of highly toxigenic CagA and VacA strains of Helicobacter pylori in gastric carcinogenesis. Review. Сучасна Гастроентерологія, 2022;3–4:42–49.
 
26.
Qi JL, He JR, Jin SM, et al. P. aeruginosa Mediated Necroptosis in Mouse Tumor Cells Induces Long-Lasting Systemic Antitumor Immunity. Front Oncol. 2021; 10: 610651.
 
27.
Pang Z, Gu MD, Tang T. Pseudomonas aeruginosa in Cancer Therapy: Current Knowledge, Challenges and Future Perspectives. Front Oncol. 2022;12:891187.
 
28.
Wu XQ, Ying F, Chung KPS, et al. Intestinal Akkermansia muciniphila complements the efficacy of PD1 therapy in MAFLD-related hepatocellular carcinoma. Cell Rep Med. 2025;6(1):101900.
 
29.
Jiang Y, Xu Y, Zheng C, et al. Acetyltransferase from Akkermansia muciniphila blunts colorectal tumourigenesis by reprogramming tumour microenvironment. Gut. 2023;72:1308–1318.
 
30.
Hou X, Zhang P, Du H, et al. Akkermansia Muciniphila Potentiates the Antitumor Efficacy of FOLFOX in Colon Cancer. Front Pharmacol. 2021;12:725583.
 
eISSN:2084-6312
ISSN:1505-7054
Journals System - logo
Scroll to top