PL EN
LIST DO REDAKCJI
Potencjalnie przeciwprątkowe leki z mórz i oceanów
 
Więcej
Ukryj
1
Instytut Medycyny Wsi im. Witolda Chodźki w Lublinie, Zakład Biologii Molekularnej i Badań Translacyjnych Kierownik Zakładu Biologii Molekularnej i Badań Translacyjnych: dr hab. n. med. Lucyna Kapka-Skrzypczak, prof. IMW
 
2
Wydział Medyczny, Wyższa Szkoła Informatyki i Zarządzania w Rzeszowie, Katedra Biologii Medycznej i Badań Translacyjnych
 
 
Autor do korespondencji
Żaneta Polak   

Zakład Biologii Molekularnej i Badań Translacyjnych Instytut Medycyny Wsi im. Witolda Chodźki ul. Jaczewskiego 2, 20-090 Lublin tel. 81 71 84 584
 
 
Med Srod. 2017;20(4):7-13
 
SŁOWA KLUCZOWE
STRESZCZENIE
Pomimo niezwykłego rozwoju medycyny, jaki można obserwować na przestrzeni ostatniego stulecia, problem gruźlicy w niektórych rejonach świata nadal pozostaje nierozwiązany. Szczególnie zagrożone są tereny Afryki i Południowo-Wschodniej Azji, gdzie zaludnienie jest duże, a higiena i dostęp do leków są na niewystarczającym poziomie. Coraz częściej pojawiające się prątki oporne na leczenie standardowymi, stosowanymi do tej pory lekami, stanowią poważny problem kliniczny. Syntezowanie zupełnie nowych związków, mających aktywność przeciwprątkową, zajmuje długie lata i wymaga znacznych nakładów finansowych, dlatego naukowcy wracają do naturalnych źródeł. Głównym kierunkiem poszukiwań nowych, potencjalnie przeciwgruźliczych substancji są rośliny, jednak coraz większą rolę odgrywają także wody słone. Głębiny mórz i oceanów posiadają wiele niezbadanych dotąd substancji o jak się okazuje, interesujących właściwościach przeciwbakteryjnych. Nowe metody badań in silico znacznie przyspieszają proces identyfikacji związków oraz ich właściwości. Wykorzystanie odkrytych substancji, jako szkieletów nowych związków znacznie usprawnia pracę, poprawiając właściwości farmakologiczne naturalnych metabolitów morskich organizmów. Wniniejszej pracy podsumowano dostępną aktualnie wiedzę na temat substancji pochodzenia morskiego, będących potencjalnymi lekami przeciwgruźliczymi.

In spite of the remarkable developments in medicine over the last century, the problem of tuberculosis in some parts of the world remains unresolved. Africa and South East Asia are endangered areas, where the population is high, and hygiene and access to medications are insufficient. The occurrence of Mycobacteria resistant to standard drugs is a serious clinical problem. Synthesizing completely new compounds that have antimycobacterial activity takes years and generates costs, so researchers are returning to natural resources. The main direction of the search for new potentially antituberculous substances are plants, but salt water is becoming increasingly important as well. The depths of the seas and oceans offer many unexplored substances that, as it turns out, have interesting antimicrobial properties. New research methods in silico greatly expedite the process of identifying compounds and their properties. The use of discovered substances as scaffolds of new compounds significantly improves the efficiency of the process and enhances the pharmacological properties of natural metabo-lites of marine organisms. This article summarizes the current knowledge of marine substances that could be potential antituberculous drugs.
REFERENCJE (31)
1.
Korzeniowska-Koseła M.: Gruźlica w Polsce – czynniki sukcesu leczenia. Adv Respir Med 2007; 75: 1-111
 
2.
WHO. Global tuberculosis report 2016.
 
3.
Śmigielska M.: Zoonozy przenoszone przez ptaki wolno żyjące. Ornis Polonica 2010. 51: 149–162.
 
4.
Virella G.: Mikrobiologia i choroby zakaźne. Elsevier Urban&Partner, Wrocław 1999:191-199.
 
5.
WHO. Treatment of tuberculosis guidelines. Fourth edition. 2009.
 
6.
Szczuka I.: Co należy wiedzieć o gruźlicy – jej objawach, wykrywaniu i leczeniu. http://www.igichp.edu.pl/subpa.... html. dostęp 21.08.2017.
 
7.
Michałowska-Mitczuk D.: Farmakoterapia gruźlicy. Post farmakoter 2009; 65:51-58.
 
8.
Klatt M., Zwolska Z., Napiórkowska A. i wsp.: Wiarygodność testów lekooporności Mycobacterium tuberculosis jako istotny element nadzorowanego leczenia gruźlicy. Post Nauk Med 2011; 24(10): 811-818.
 
9.
Kruczak K., Niżankowska-Mogilnicka E.: Gruźlica wielolekooporna – współczesne problemy. Pneumonol Alergol Pol 2009; 77: 276-283.
 
10.
CDC. Extensively Drug-Resistant Tuberculosis – United States. 1993-2006.
 
11.
Zumla A.I., Gillespie S.H., Hoelscher M.i wsp.: New antituberculosis drugs, regimens, and adjunct therapies: needs advances and future prospects. Lancet Infect Dis 2014. 14: 327-40.
 
12.
Jura C.: Bezkręgowce. Podstawy morfologii funkcjonalnej, systematyki i filogenezy. Wydawnictwo Naukowe PWN 2007.
 
13.
Daletos G., Ancheeva E., Chaidir Ch. i wsp.: Antimycobacterial Metabolites from Marine Invertebrates. Arch Pharm 2016. 349: 1-11.
 
14.
Liu X., Chen C., Huang W. i wsp.: Exploring anti-TB leads from natural products library originated from marine microbes and medicinal plants. Antonie van Leeuwenhoek 2012. 102: 447–461.
 
15.
Nora De Souza M.V.: Marine Natural Products Against Tuberculosis. Scientific World Journal 2006. 6: 847–861.
 
16.
García A., Bocanegra-García V., Palma-Nicolás J.P. i wsp.: Recent advances in antitubercular natural products. Eur J Med Chem 2012. 49: 1 -23.
 
17.
Correa H., Valenzuela A.L., Ospina L. F. i wsp.: Anti-inflammatory effects of the gorgonian Pseudopterogorgia elisabethae collected at the Islands of Providencia and San Andrés (SW Caribbean). J Inflamm (Lond) 2009. 6:5.
 
18.
Sakai R., Higa T., Jefford C.W. i wsp.: Manzamine A, a novel antitumor alkaloid from a sponge. J Am Chem Soc 1986. 108: 6404–5.
 
19.
Supong K., Suriyachadkun C., Suwanborirux K. i wsp.: Verrucosispora andamanensis 1 sp. nov., isolated from the Marine sponge collected in Andaman sea (Tao island), Thailand. Int J Syst Evol Microbiol 2013. 63: 3970-4.
 
20.
Veyisoglu A., Sahin N.: Streptomyces hoynatensis sp. nov., isolated from deep marine sediment. Int J Syst Evol Microbiol 2014. 64: 819–826.
 
21.
Phongsopitanun W., Thawai C., Suwanborirux K. i wsp.: Streptomyces chumphonensis sp. nov., isolated from marine sediments. Int J Syst Evol Microbiol 2014. 64: 2605–2610.
 
22.
Viegelmann C., Margassery L.M., Kennedy J.i wsp.: Metabolomic profiling and genomic study of a marine spongeassociated Streptomyces sp. Mar Drugs 2014. 12: 3323-51.
 
23.
Chen C., Song F., Wang Q. i wsp.: A marine-derived Streptomyces sp. MS449 produces highyield of actinomycin X2 and actinomycin D with potentanti-tuberculosis activity. Appl Microbiol Biotechnol 2012. 95: 919–27.
 
24.
Laport M.S., Santos O.C.S., Muricy G.: Marine sponges: potential sources of new antimicrobial drugs. Curr Pharm Biotechno 2009. 10: 86-105.
 
25.
Chen C., Wang J., Guo H. i wsp.: Three antimycobacterial metabolites identified from a marine-derived Streptomyces sp. MS100061. Appl Microbiol Biotechnol 2012. 97:3885- 92.
 
26.
Arai M., Sobou M., Vilcheze C. i wsp.: Halicyclamine A, a Marine spongean alkaloid as a lead Dor anti-tuberculosis agent. Bioorgan Med Chem 2008. 16: 6732-6.
 
27.
Lee H., Suh J.-W.: Anti-tuberculosis lead molecules from natural products targeting Mycobacterium tuberculosis ClpC1. J Ind Microbiol Biotechnol 2016. 43:205-12.
 
28.
Bueno J., Coy E.D., Stashenko E.: Antimycobacterial natural products – an opportunity for the Colombian biodiversity. Rev Esp Quimioter 2011. 24: 175-83.
 
29.
Liou M., Grkovic T., Zhang l. i wsp.: A model to predict anti-tuberculosis activity: value proposition for marine microorganisms. J Antibiot 2016. 69:594-9.
 
30.
Kottakota S. K., Evangelopoulos D., Alnimr A. i wsp.: Synthesis and Biological Evaluation of Purpurealidin E-Derived Marine Sponge Metabolites: Aplysamine-2, Aplyzanzine A, and Suberedamines A and B. J Nat Prod 2012. 75: 1090−1101.
 
31.
Canché Chay C. I., Gómez Cansino R., Espitia Pinzón CI i wsp. Synthesis and Anti-Tuberculosis Activity of the Marine Natural Product Caulerpin and its Analogues. Mar Drugs 2014. 12: 1757-72.
 
eISSN:2084-6312
ISSN:1505-7054
Journals System - logo
Scroll to top