PL EN
PRACA ORYGINALNA
Lekooporność i molekularna charakterystyka Streptococcus agalactiae izolowanych od kobiet w wieku rozrodczym
 
Więcej
Ukryj
1
Department of Microbiology, University of Agriculture in Cracow
 
2
Centre for Microbiological Research and Autovaccines, Cracow Head of the Department of Microbiology: dr hab. eng. M. Chmiel
 
 
Autor do korespondencji
Anna Lenart-Boroń   

Department of Microbiology University of Agriculture in Kraków Mickiewicza ave 24/28 phone no.: 126624096
 
 
Med Srod. 2016;19(4):27-33
 
SŁOWA KLUCZOWE
STRESZCZENIE
Wstęp:
Infekcje wywołane przez Streptococcus są jednymi z głównych przyczyn chorób inwazyjnych noworodków. Badania przesiewowe w kierunku nosicielstwa paciorkowców z grupy B (GBS) u ciężarnych umożliwiają zastosowanie śródporodowej profilaktyki antybiotykowej w celu zapobiegania przenoszeniu bakterii z matki na noworodka.

Materiał i metody:
Przebadano 63 szczepy bakterii uzyskane poprzez wymazy pochwowe od ciężarnych i nieciężarnych kobiet w wieku rozrodczym. Bakterie zidentyfikowano na podstawie morfologii kolonii, typu hemolizy, barwienia Grama i testu SLIDEX® Strepto Plus. Profil lekooporności 56 szczepów zbadano metodą dyfuzyjnokrążkową. Występowanie genów warunkujących lekooporność oznaczono techniką konwencjonalnego PCR, natomiast metoda multiplex PCR posłużyła do oznaczenia polisacharydów otoczkowych.

Wyniki:
Nie stwierdzono oporności na lek pierwszego wyboru, jakim jest penicylina. 78,6% izolatów było opor na makrolidy i inkozamidy, które są antybiotykami stosowanymi u pacjentek uczulonych na penicylinę. Wyniki te korespondowały z wynikami testów PCR, gdyż geny tetM i ermA1 były najczęściej stwierdzanymi genetycznymi determinantami lekooporności (odpowiednio u 98,4 i 87,3% szczepów). Aż 7,94% szczepów S. agalactiae posiadało 7 spośród 13 testowanych genów warunkujących oporność na różne antybiotyki. Test multiplex PCR wykazał, że najbardziej rozpowszechniony był typ Ia polisacharydów otoczkowych, powiązany z najcięższymi i najpoważniejszymi infekcjami. Został on wykryty u 65,08% szczepów.

Wnioski:
Pomimo całkowitej wrażliwości na penicylinę, wielooporność szczepów S. agalactiae izolowanych od kobiet w wieku rozrodczym jest powszechna. Oporność na antybiotyki u tych bakterii może być warunkowana przez występowanie więcej niż jeden gen w jednym izolacie


Introduction:
Streptococcus agalactiae infections are among the most significant causes of neonatal invasive diseases. Proper screening and detection of pregnant women carrying GBS allows intrapartum administration of antibiotic prophylaxis and is an effective measure in preventing transmission of bacteria from mother to newborns.

Material and Methods:
Sixty three bacterial strains were isolated from vaginal swabs from pregnant and nonpregnant women of reproductive age. Species were identified by colony morphology, haemolysis type, Gram staining and SLIDEX® Strepto Plus latex test. Antimicrobial resistance of 56 strains was determined using disk-diffusion method. The presence of molecular resistance determinants was assessed using PCR with specific primers, and capsular types were identified using multiplex PCR.

Results:
None of the strains were resistant to the first drug of choice, penicillin. A large percentage of isolates (78.6%) were resistant to doxycycline. The prevalence of resistance to macrolides and lincosamides, antibiotics used in women allergic to penicillin, was high. Those results corresponded with PCR tests, as tetM and ermA1 were most frequently detected genes (98.4 and 87.3%, respectively). 7.94% of strains possessed 7 different out of 13 tested genes determining resistance to different groups of antimicrobials. Among the capsular types, Ia, which proved to be associated with the most severe and invasive infections in mothers and neonates, was the most prevalent (65.08%).

Conclusions:
Even though they are susceptible to penicillin, multidrug resistance is common among S. agalactiae strains isolated from women of reproductive age and this resistance can be caused by more than one gene per single isolate.

REFERENCJE (39)
1.
Oviedo P., Pegels E., Laczeski M. et al.: Phenotypic and genotypic characterization of Streptococcus agalactiae in pregnant women. First study in a provinence of Argentina. Braz J Microbiol 2013; 44: 253-258.
 
2.
Henneke P., Berner R.: Interaction of neonatal phagocytes with group B Streptococcus: recognition and response. Infect Immun 2006; 74: 3085-3095.
 
3.
Obszańska K., Kern-Zdanowicz I., Sitkiewicz I.: Virulence factors and pathogenic mechanisms of
 
4.
Brimil N., Barthell E., Heindrichs U. et al.: Epidemiology of Streptococcus agalactiae colonization in Germany. Int J Med Microbiol 2006; 296: 39-44.
 
5.
Otaguiri E.S., Belotto Morguette A.E., Reis Tavares E. et al.: Commensal Streptococcus agalactiae isolated from patients seen at University Hospital of Londrina, Paranà, Brazil: capsular types, genotyping. Antimicrobial susceptibility and virulence determinants. BMC Microbiol 2013; 13: 297.
 
6.
Bigos M., Łysakowska M., Wasiela M.: Perinatal infections caused by Streptococcus agalactiae. Adv Microbiol 2012; 51: 299-308.
 
7.
Verani J.R., McGee L., Schrag S.J.: Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention (CDC): Prevention of perinatal group B streptococcal disease – revised guidelines from CDC, 2010. MMWR Recommendations and Reports, 2010; 59: 1-36.
 
8.
Capanna F., Emonet S.P., Cherkaoui A. et al.: Antibiotic resistance patterns among group B Streptococcus isolates: Implications for antibiotic prophylaxis for early-onset neonatal sepsis. Swiss Med Wkly 2013; 143: w13778.
 
9.
Roberts M.C.: Tetracycline resistance determinants: mechanisms of action, regulation of expression, genetic mobility, and distribution. FEMS Microbiol Rev 1996; 19: 1-24.
 
10.
Gygax S.E., Schuyler J.A., Kimmel L.E. et al.: Erythromycin and clindamycin resistance in group B streptococcal clinical isolates. Antimicrob Agents Chemother 2006; 50: 1875- 1877.
 
11.
Kowalska B., Niemiec K.T., Drejewicz H. et al.: Prevalence of group B streptococcal colonization in pregnant women and their newborns based on the results of examination of patients in the Obstetric and Gynecology Department of the National Research Institute of Mother and Child – a pilot study. Pol Gynaecol 2003; 74: 1223-1227.
 
12.
Kraśnianin E., Skręt-Magierło J., Witalis J. et al.: The incidenceof Streptococcus group B in 100 parturient women and the transmission of pathogens to the newborn. Pol Gynaecol 2009; 80: 285-289.
 
13.
Imperi M., Pataracchia M., Alfarone G. et al.: A multiplex PCR assay for the direct identification of the capsular type (Ia to IX) of Streptococcus agalactiae. J Microbiol Methods 2010; 80: 212-214.
 
14.
Manning S.D., Lacher D.W., Davies H.D. et al.: DNA Polymorphism and molecular subtyping of the capsular gene cluster of group B Streptococcus. J Clin Microbiol 2005; 43: 6113-6116.
 
15.
von Both U., Ruess M., Mueller U. et al.: A serotype V clone is predominant among erythromycin-resistant Streptococcus agalactiae isolates in a southwestern region of Germany. J Clin Microbiol 2003; 41: 2166-2169.
 
16.
Żabicka D., Izdebski R., Hryniewicz W.: Recommendations on the selection of tests to determine the susceptibility of bacteria to antibiotics and chemotherapeutics, 2009. Determination of the sensitivity of Gram-positive bacteria of the genus Streptococcus. 2009. (Rekomendacje doboru testów do oznaczania wrażliwości bakterii na antybiotyki i chemioterapeutyki 2009. Oznaczanie wrażliwości ziarniaków Gram-dodatnich z rodzaju Streptococcus spp.) (in Polish.).
 
17.
European Committee on Antimicrobial Susceptibility Testing: Breakpoint tables for interpretation of MICs and zone diameters. Version 1.3, January 5, 2011.
 
18.
Sutcliffe J., Grebe T., Tait-Kamradt A. et al.: Detection of erythromycin-resistant determinants by PCR. Antimicrob Agents Chemother 1996; 40: 2562-2566.
 
19.
Poyart C., Celli J., Trieu-Cuot P.: Conjugative transposition of Tn916-related elements from Enterococcus faecalis to Escherichia coli and Pseudomonas fluorescens. Antimicrob Agents Chemother 1995; 39: 500-506.
 
20.
Arana D.M., Rojo-Bezares B., Torres C. et al.: First clinical solate in Europe of clindamycin-resistant group B Streptococcus mediated by the lnu(B) gene. Rev Esp Quimioter 2014; 27: 106-109.
 
21.
Clermont D., Chesneau O., DeCespedes G. et al.: New tetracycline resistance determinants coding for ribosomal protection in streptococci and nucleotide sequence of tet(T) isolated from Streptococcus pyogenes A498. Antimicrob Agents Chemother 1997; 41: 112-116.
 
22.
Social Science Statistics. 2015. http://www.socscistatistics. com/tests/chisquare/Default.aspx; Accessed July 12th 2015.
 
23.
Heczko P.B., Niemiec T., Lauterbach R. et al.: Recommendationsfor the detection of group B Streptococcus (GBS) carriage in pregnant women and for prevention of neonatalinfections caused by this pathogen. Zakażenia. 2008; 8: 87- 96 (in Polish).
 
24.
Markiewicz Z., Kwiatkowski Z.A.: Bacteria, antibiotics, drug resistance. (Bakterie, antybiotyki, lekooporność). PWN Scientific Publishing, Warsaw 2012: 248 (in Polish).
 
25.
Borchardt S.M., DeBusscher J.H., Tallman P.A. et al.: Frequency of antimicrobial resistance among invasive and colonizing group B streptococcal isolates. BMC Infect Dis 2006; 6: 57-64.
 
26.
Panda B., Iruretagoyena I., Stiller R. et al.: Antibiotic resistance and penicillin tolerance in ano-vaginal group B streptococci. J Matern Fetal Neonatal Med 2009; 22: 111-114.
 
27.
Phares C.R., Lynfield R., Farley M.M. et al.: Epidemiology of invasive group B streptococcal disease in the United States, 1999–2005. JAMA-J Am Med Assoc 2008; 299: 2056-2065.
 
28.
Brzychczy-Włoch M., Gosiewski T., Bodaszewska M. et al.: Genetic characterization and diversity of Streptococcus agalactiae isolates with macrolide resistance. J Med Microbiol 2010; 59: 780-786.
 
29.
Pruss A., Galant K., Giedrys-Kalemba S.: Analysis of screening tests for Streptococcus agalactiae in pregnant women from the West Pomeranian region. Ginekol Pol 2015; 86: 616-621.
 
30.
Prośniewska M., Kalinka J., Bigos M. et al.: Research-based assessment of antibiotic resistance of
 
31.
Leclercq R.: Mechanisms of resistance to macrolides and lincosamides: nature of the resistance. elements and their clinical implications. Clin Infect Dis 2002; 34: 482-492.
 
32.
Poyart C., Jardy L., Quesne G. et al.:Genetic basis of antibiotic resistance in Streptococcus agalactiae strains isolated in a French hospital. Antimicrob Agents Chemother 2003; 47: 794-797.
 
33.
Daly M.M., Doktor S., Flamm R. et al.: Characterization and prevalence of MefA, MefE, and the associated msr(D) gene in Streptococcus pneumoniae clinical isolates. J Clin Microbiol 2004; 42: 3570-3574.
 
34.
Boswihi S.S., Udo E.E., Al-Sweih N.: Serotypes and antibiotic resistance in group B streptococcus isolated from patients at the Maternity Hospital, Kuwait. J Med Microbiol 2012; 61: 126-131.
 
35.
Hraoui M., Boutiba-Ben B.I., Rachdi M. et al.: Macrolide and tetracycline resistance in clinical strains of Streptococcus agalactiae isolated in Tunisia. J Med Microbiol 2012; 61: 1109-1113.
 
36.
Florindo C., Damião V., Silvestre I. et al.: The Group for the prevention of neonatal GBS infection. Epidemiological surveillance of colonising group B Streptococcus epidemiology in the Lisbon and Tagus Valley regions, Portugal (2005 to 2012): emergence of a new epidemic type IV/clonal complex 17 clone. Eurosurveillance 2014; 19.
 
37.
Johri A.K., Paoletti L.C., Glaser P. et al.: Group B Streptococcus: global incidence and vaccine development. Nat Rev Microbiol 2006; 4: 932-942.
 
38.
Ippolito D.L., James W.A., Tinnemore D. et al.: Group B streptococcus serotype prevalence in reproductive-age women at a tertiary care military medical center relative to global serotype distribution. BMC Infect Dis 2010; 10: 336.
 
39.
Zaleznik D.F, Rench M.A., Hillier S. et al.: Invasive disease due to group B Streptococcus in pregnant women and neonates from diverse population groups. Clin Infect Dis 2000; 30: 276-218.
 
eISSN:2084-6312
ISSN:1505-7054
Journals System - logo
Scroll to top