PRACA POGLĄDOWA
Metyloargininy - nieklasyczne czynniki ryzyka choroby sercowo-naczyniowej w osoczu krwi osób narażonych i nienarażonych na dym tytoniowy
 
Więcej
Ukryj
1
Instytut Medycyny Pracy i Zdrowia Środowiskowego, Sosnowiec. Dyrektor: dr Piotr Z. Brewczyński
2
Zakład Opieki Zdrowotnej, Laboratorium Centralne, Olkusz. Dyrektor: lek. med. Jerzy Niewiara
3
Zakład Chemii Ogólnej i Nieorganicznej, Wydział Farmaceutyczny z Oddziałem Medycyny Laboratoryjnej, Śląski Uniwersytet Medyczny, Sosnowiec. Kierownik: dr hab. Andrzej Sobczak
 
Med Srod. 2010;13(4):65–74
SŁOWA KLUCZOWE
STRESZCZENIE ARTYKUŁU
Od ponad dekady metylowe pochodne argininy cieszą się dużym zainteresowaniem wśród naukowców zajmujących się chorobami sercowo-naczyniowymi. Przyczyną są ich własności biologiczne. Asymetryczna dimetyloarginina (ADMA) pełni funkcję inhibitora syntazy tlenku azotu (NOS) i postrzegana jest obecnie jako niezależny czynnik ryzyka choroby wieńcowej, natomiast symetryczna dimetyloarginina (SDMA) może być użytecznym biomarkerem, pozwalającym wykryć osoby we wczesnym stadium choroby nerek oraz określić u nich ryzyko rozwoju choroby sercowo-naczyniowej. W pierwszej części pracy opisano biosyntezę i katabolizm metyloarginin, w następnej części ich związek z chorobami sercowonaczyniowymi oraz wpływ homocysteiny na ich osoczowe stężenie. W ostatniej części pracy dokonano przeglądu literatury związanej z wpływem dymu tytoniowego na stężenie ADMA i SDMA w osoczu.

The role of methylated derivatives of arginine in cardiovascular diseases has been studied for over a decade. The reason for this are their biological characteristics. Asymmetric dimethylarginine (ADMA) is an inhibitor of nitric oxide synthase (NOS) and nowadays it is recognized as an independent risk factor of coronary artery disease. Application of symmetric dimethylarginine (SDMA) may be practical and useful for identifying subjects from early stage of renal disease and determining their risk of cardiovascular diseases. The first part of the paper shows biosynthesis and catabolism of methylarginines, the following part discusses their association with cardiovascular diseases and correlation between homocysteine plasma level. The third part of the paper is a review of studies that have evaluated the impact of tobacco smoke on ADMA and SDMA.
 
REFERENCJE (40)
1.
Sobczak A.: Kotynina, homocysteina i alfa-tokoferol jako markery przewlekłego narażenia na dym tytoniowy. Ann Acad Med. Siles 2005; 59, Supl.92: 1-56.
 
2.
Podolec P., Kopeç G., Pająk A., i wsp.: Wytyczne Polskiego Forum Profilaktyki Chorób UkΠadu Krà˝enia dotyczàce oceny ryzyka sercowo-naczyniowego. Kardiol Pol 2007; 65: 100–104.
 
3.
Grillo M.A, Colombatto S.: Arginine revisited: minireview article. Amino Acids 2004; 26: 345-351.
 
4.
Cooke J.P.: Asymmetrical dimethylarginine: the über marker? Circulation 2004; 109: 1813-1818.
 
5.
Vallance P., Leone A., Calver A., et al.: Accumulation of an endogenous inhibitor of nitric oxide synthesis in chronic renal failure. Lancet 1992; 339: 572-575.
 
6.
Böger R.H., Bode-Böger S.M., Tsao P.S., et al.: An endogenous inhibitor of nitric oxide synthase regulates endothelial adhesiveness for monocytes. J Am Coll. Cardiol 2000; 36: 2287-2295.
 
7.
Böger R.H., Sydow K., Borlak J., et al.: LDL cholesterol upregulates synthesis of asymmetrical dimethylarginine in human endothelial cells: involvement of S-adenosylmethionine- dependent methyltransferases. Circ Res 2000; 87: 99-105.
 
8.
Leiper J.M., Santa Maria J., Chubb A., et al.: Identification of two human dimethylarginine dimethylaminohydrolases with distinct tissue distributions and homology with microbial arginine deiminases. Biochem J 1999; 343: 209-214.
 
9.
MacAllister R.J., Parry H., Kimoto M., et al.: Regulation of nitric oxide synthesis by dimethylarginine dimethylaminohydrolase. Br J Pharmacol 1996; 119: 1533-1540.
 
10.
Cooke J.P.: Does ADMA cause endothelial dysfunction? Arterioscler Thromb Vasc Biol 2000; 20: 2032-2037.
 
11.
Böger R.H.: Asymmetric dimethylarginine (ADMA): a novel risk marker in cardiovascular medicine and beyond. Ann Med 2006; 38: 126-136.
 
12.
Liu Q., Gross S.S.: Binding sites of nitric oxide synthases. Methods Enzymol 1996; 268: 311-324.
 
13.
Bańkowski E.: Biochemia. Podręcznik dla studentów medycyny. Wydawnictwo Medyczne Urban & Partner, Wrocław, 2004: 584.
 
14.
Böger R.H. Bode-Böger S.M., Thiele W., et al.: Biochemical evidence for impaired nitric oxide synthesis in patients with peripheral arterial occlusive disease. Circulation 1997; 95: 2068-2074.
 
15.
Azuma H., Sato J., Hamasaki H., et al.: Accumulation of endogenous inhibitors for nitric oxide synthesis and decreased content of L-arginine in regenerated endothelial cells. Br J Pharmacol 1995; 115: 1001-1004.
 
16.
Böger R.H.: Asymmetric dimethylarginine (ADMA) and cardiovascular disease: insights from prospective clinical trials. Vasc Med 2005; 10: 19-25.
 
17.
Lu T.M., Ding Y.A., Lin S.J., et al.: Plasma levels of asymmetrical dimethylarginine and adverse cardiovascular events after percutaneous coronary intervention. Eur Heart J 2003; 24: 1912-1919.
 
18.
Meinitzer A., Seelhorst U., Wellnitz B., et al.: Asymmetrical dimethylarginine independently predicts total and cardiovascular mortality in individuals with angiographic coronary artery disease (the Ludwigshafen Risk and Cardiovasular Health study). Clin Chem 2007; 53: 273-283.
 
19.
Stühlinger M.: Asymmetrische dimethyl arginin (ADMA): a novel cardiovascular risk factor? Wien Med Wochenschr 2007; 157: 57-60.
 
20.
Mangoni A.A.: The emerging role of symmetric dimethylarginine in vascular disease. Adv Clin Chem 2009; 48: 73-94.
 
21.
Surdacki A.: L-arginine analogs – inactive markers or active agents in atherosclerosis? Cardiovasc Hematol Agents Med Chem 2008; 6: 302-311.
 
22.
Bode-Böger S.M., Scalera F., Kielstein J.T., et al.: Symmetrical dimethylarginine: a new combined parameter for renal function and extent of coronary artery disease. J Am Soc Nephrol 2006; 17: 1128-1134.
 
23.
Kiechl S., Lee P., Santer G., et al.: Asymmetric and symmetric dimethylarginines are of similar predictive value for cardiovascularrisk in the general population. Atherosclerosis 2009; 205: 261-265.
 
24.
Refsum H., Smith A.D., Ueland P.M.; et al.: Facts and recommendations about total homocysteine determinations: an expert opinion. Clin Chem 2004; 50: 3-32.
 
25.
Sobczak A.: The effects of tobacco smoke on the homocysteine level – a risk factor of atherosclerosis. Addict Biol 2003; 8: 147-158.
 
26.
Böger R.H., Bode-Böger S.M., Sydow K., et al.: Plasma concentration of asymmetric dimethylarginine, an endogenous inhibitor of nitric oxide synthase, is elevated in monkeys with hyperhomocyst(e)inemia or hypercholesterolemia. Arterioscler Thromb Vasc Biol 2000; 20: 1557-1564.
 
27.
Böger R.H., Lentz S.R., Bode-Böger S.M., ET AL.: Elevation of asymmetrical dimethylarginine may mediate endothelial dysfunction during experimental hyperhomocyst(e)inaemia in humans. Clin Sci (Lond) 2001; 100: 161-167.
 
28.
Zhang C., Cai Y., Adachi M.T., et al.: Homocysteine induces programmed cell death in human vascular endothelial cells through activation of the unfolded protein response. J Biol Chem 2001; 276: 35867-35874.
 
29.
Stühlinger M.C., Tsao P.S., Her J.H., ET AL.: Homocysteine impairs the nitric oxide synthase pathway: role of asymmetric dimethylarginine. Circulation 2001; 104: 2569-2575.
 
30.
Dayal S., Lentz S.R.: ADMA and hyperhomocysteinemia. Vasc Med 2005; 10: 27-33.
 
31.
Zhang W.Z., Venardos K., Chin-Dusting J., et al.: Adverse effects of cigarette smoke on NO bioavailability: role of arginine metabolism and oxidative stress. Hypertension 2006; 48: 278-285.
 
32.
Kielstein J.T., Peter C., Adams M.C.: Cigarettes and ADMA: the smoke hasn't cleared yet. Hypertension 2006; 48: 20.
 
33.
Sobczak A., Goniewicz M., Szołtysek-Bołdys I.: ADMA and SDMA levels in healthy men exposed to tobacco smoke. Atherosclerosis 2009; 205: 357-359.
 
34.
Schiel R., Franke S., Busch M., et al.: Effect of smoking on risk factors for cardiovascular disease in patients with diabetes mellitus and renal insufficiency. Eur J Med Res 2003; 8: 283-291.
 
35.
Lenzen H., Tsikas D., Böger RH.: Asymmetric dimethylarginine (ADMA) and the risk for coronary heart disease: the multicenter CARDIAC study. Eur J Clin Pharmacol 2006; 62: 45-49.
 
36.
Tonstad S., Thorsrud H., Torjesen P.A., et al: Do novel risk factors differ between men and women aged 18 to 39 years with a high risk of coronary heart disease? Metabolism 2007; 56: 260-266.
 
37.
Hamasaki H., Sato J., Masuda H., et al.: Effect of nicotine on the intimal hyperplasia after endothelial removal of the rabbit carotid artery. Gen Pharmacol 1997; 28: 653-659.
 
38.
Jiang D.J., Jia S.J., Yan J., et al.: Involvement of DDAH/ADMA/ NOS pathway in nicotine-induced endothelial dysfunction. Biochem Biophys Res Commun 2006; 349: 683-693.
 
39.
Maas R., Schulze F., Baumert J., et al.: Asymmetric dimethylarginine, smoking, and risk of coronary heart disease in apparently healthy men: prospective analysis from the population- based Monitoring of Trends and Determinants in Cardiovascular. Disease/Kooperative Gesundheitsforschung in der Region Augsburg study and experimental data. Clin Chem 2007; 53: 693-701.
 
40.
Wang J., Sim A.S., Wang X.L., et al.: Relations between plasma asymmetric dimethylarginine (ADMA) and risk factors for coronary disease. Atherosclerosis 2006; 184: 383-388.
 
eISSN:2084-6312
ISSN:1505-7054