PL EN
PRACA POGLĄDOWA
Fluoroza u człowieka i zwierząt
 
Więcej
Ukryj
1
Katedra i Zakład Stomatologii Zachowawczej i Endodoncji, Pomorski Uniwersytet Medyczny w Szczecinie, al. Powstańców Wielkopolskich 72, 70-111 Szczecin, Polska Kierownik: Prof. dr hab. n. med. J. Buczkowska-Radlińska
 
2
Katedra i Zakład Biologii i Parazytologii Medycznej, Pomorski Uniwersytet Medyczny w Szczecinie, al. Powstańców Wielkopolskich 72, 70-111 Szczecin, Polska Kierownik: Prof. dr hab. n. biol. E. Kalisińska
 
 
Autor do korespondencji
Mirona Palczewska-Komsa   

Katedra i Zakład Stomatologii Zachowawczej i Endodoncji, Pomorski Uniwersytet Medyczny w Szczecinie, al. Powstańców Wielkopolskich 72, 70-111 Szczecin, Polska
 
 
Med Srod. 2015;18(4):57-61
 
SŁOWA KLUCZOWE
STRESZCZENIE
Związki fluoru w przyrodzie występują dość powszechnie. Obecne są w wodzie, w glebie, w głębokich pokładach geologicznych i żywych organizmach. Na człowieka i zwierzęta mogą oddziaływać w umiarkowany sposób korzystnie lub znacznie częściej niekorzystnie. Zarówno niedobór, jak i nadmiar fluorków powoduje niepożądane efekty w tkankach twardych, tkance nerwowej i innych narządach. W wyniku niekorzystnego oddziaływania tego pierwiastka na organizm żywy dochodzi do fluorozy. Celem pracy było określenie toksycznego efektu oddziaływania związków fluoru na organizm człowieka i innych zwierząt kręgowych w zależności od czasu i ilości dawki pobieranych F - oraz rodzaju tkanki i/lub narządu kumulującego F - na podstawie dostępnego piśmiennictwa naukowego. Na podstawie przeanalizowanych publikacji stwierdzono, że toksyczność F - w znacznym stopniu zależy od czasu ekspozycji i dawki narażenia na ten pierwiastek. U ludzi i zwierząt częściej obserwuje się fluorozę przewlekłą niż ostrą. Czynniki biologiczne (w tym różnice gatunkowe), wrażliwość i aktywność metaboliczna tkanek oraz czynniki środowiskowe mogą się kumulować, co zwiększa prawdopodobieństwo wzrostu toksyczności F - dla organizmów żywych.

Fluorine compounds occur quite commonly in nature. They are exist in water, in soil, in geological decks, in living organisms. On human and animal bodies can influence moderately preferably or more often unfavorably. The deficiency or excess of this element results in undesirable effects in hard tissue, nervous tissue and other organs. Due to adverse effect of this element to a living organism it comes to fluorosis. The aim of the study was to determine the influence of the toxic effect of fluoride compounds on the human and other vertebrate animals depending on the time and dosage F - and the type of tissue and / or organ on the basis of the scientific literature. On the basis of the available publications, it was revealed that F - toxicity substantially depends on time and dose exposure on these element. Chronic fluorosis, more often than acute is observed in human and animals. Biological factors (including species differences) susceptibility, metabolic activity of tissue and environmental factors can accumulate, which increases probability of F - toxicity for living organisms.
 
REFERENCJE (30)
1.
Dobrzański Z., Górecka H.: Fluor w żywieniu drobiu. Drobiarstwo Polskie 2001; 3: 13-15.
 
2.
Jańczuk Z., Kaczmarek U., Lipski M. (red). Stomatologia Zachowawcza z endodoncją. Zarys kliniczny. Wyd. Lekarskie PZWL, Warszawa 2014: 201-210, 504-505.
 
3.
Telesiński A., Śnioszek M.: Bioindykatory zanieczyszczenia środowiska naturalnego fluorem. Bromat Chem Toksykol 2009; 42: 1148-1154.
 
4.
Pollick H.F.: Water fluoridation and the environment. Int J Occup Environ Health 2004; 10: 343-350.
 
5.
Whitword G.M.: Intake and metabolism of fluoride. Adv Dent Res 1994; 8: 5-14.
 
6.
Piątowska D. (red.).: Kariologia współczesna. Postępowanie kliniczne. Zarys Kariologii. Wydanie 1. Wyd. Med Tour Pres International, Warszawa 2009: 130-152.
 
7.
Ozsvath D.L.: Fluoride and environmental health: a review. Rev Environ Sci Biotech 2009; 8: 59-79.
 
8.
Indulski J.A. (red.). Fluor i fluorki. Kryteria zdrowotne środowiska Wydawnictwo Lekarskie, Warszawa 1989: 44-57.
 
9.
Masoud M.S., El-Sarraf W.M., Harfoush A.A. i wsp.: The effect of fluoride and other ions on algae and fish of coastal water of Mediterranean Sea, Egypt. Am J Environ Sci 2006; 2: 49-59.
 
10.
Kaminsky L.S., Mahoney M.C., Leach J. i wsp.: Fluoride: benefits and risks of exposure. Crit Rev Oral Biol Med 1990; 1: 261-281.
 
11.
Tsunoda M., Aizawa Y., Nakano K. i wsp.: Changes in fluoride levels in the liver, kidney, and brain and in neurotransmitters of mice after subacute administration of fluoride Fluoride; 2005: 38: 284-292.
 
12.
Harrison P.T.C.: Fluoride in water: a UK perspective. J Fluor Chem 2005; 126: 1448-1456.
 
13.
Den Besten P.K.: Biological mechanisms of dental fluorosis relevant to the use of fluoride supplements. Community Dent Oral Epidemiol 1999; 27: 41-47.
 
14.
Reddy D.R.: Neurology of endemic skeletal fluorosis. Neurol India 2009; 57: 7-12.
 
15.
Choubisa S.L., Choubisa L., Choubisa D.: Osteo-dental fluorosis in relation to nutritional status, living habits, and occupation in rural tribal areas of Rajasthan, India. Fluoride 2009; 42: 210-215.
 
16.
Mittal M., Flora S.J.S.: Effects of individual and combined exposure to sodium arsenite and sodium fluoride on tissue oxidative stress, arsenic and fluoride levels on male mice. Chem Biol Interact 2006; 162: 128-139.
 
17.
Macicek P., Krook L.P.: Fluorosis in horses drinking artificially fluoridated water. Fluoride 2008; 41: 177-183.
 
18.
Schultz M., Kierdorf U., Sedlacek F. i wsp.: Pathological bone changes in the mandibles of wild red deer (Cervus elaphus L.) exposed to high environmental levels of fluoride. J Anat 1998; 193: 431-442.
 
19.
Suttie J.W.: Effects of Inorganic Fluorides On Animals. J Air Pollut Control Assoc. 1964; 14:461-4.
 
20.
McDonald J.L. Jr, Schemerhorn B.R., Stookey G.K.: Influence of fluoride upon plaque and gingivitis in the beagle dog. J Dent Res 1978; 57: 899-902.
 
21.
Bauer W.H.: Experimental chronic fluorine intoxication; effect on bones and teeth. Am J Orthod Oral Surg 1945; 31: 700-719.
 
22.
Dąbkowska E., Bohatyrewicz A., Wieczorek P. i wsp.: Ocena zawartości fluoru i wapnia w kościach z osteosklerozą. W: Ogoński T, Samujło D, Machy Z (red), Fluor i biopierwiastki w biologii i medycynie. VIII Sympozjum Fluorowe, 23-24 kwietnia 1998, Szczecin: 75-78.
 
23.
Mousny M., Omelon S., Wise L. i wsp.: Fluoride effects on bone formation and mineralization are influenced by genetics. Bone 2008; 43: 1067-1074.
 
24.
Mueller F., Fuchs B., Kaser-Hotz B.: Comparative biology of human and canine osteosarcoma. Anticancer Res 2007; 27: 155-164.
 
25.
Kim F.M., Hayes C., Williams P.L. i wsp.: National Osteosarcoma Etiology Group. An assessment of bone fluoride and osteosarcoma. J Dent Res 2011; 90: 1171-1176.
 
26.
Wang Y.Z.: The cartilage damage of fluorosis. Fluoride 1995; 28: 39.
 
27.
Harbow D.J., Robinson M.G., Monsour P.A.: The effect of chronic fluoride administration on rat condylar cartilage. Aust Dent J 1991; 37: 55-62.
 
28.
Luke J.: Fluoride deposition in the aged human pineal gland. Caries Res 2001; 35: 125-128.
 
29.
Żyluk B., Chlubek D., Nowacki P. i wsp.: Stężenie fluorków w tkance mózgowej szczurów eksponowanych na działanie fluorku sodu w wodzie pitnej. W: Machoy Z, Chlubek D, Samujło D (red). Badania nad fluorem u progu trzeciego tysiąclecia. Metabolizm fluoru 2002. X Sympozjum Fluorowe, 19 kwietnia 2002, Szczecin: 51-54.
 
30.
Bharti V., Srivastva R.S.: Fluoride-induced oxidative stress in rat’s brain and its amelioration by buffalo (Bubalus bubalis) pineal proteins and melatonin. Biol Trace Elem Res 2009; 130: 131-140.
 
eISSN:2084-6312
ISSN:1505-7054
Journals System - logo
Scroll to top