Editor's Choice
Do intestinal microbiota contribute to obesity?
More details
Hide details
Zakład Immunologii, Uniwersytet Medyczny im. Karola Marcinkowskiego w Poznaniu, Polska
Zakład Pielęgniarstwa, Akademia im. Jakuba z Paradyża, Polska
Izabela Korczowska   

Zakład Immunologii Uniwersytet Medyczny im. Karola Marcinkowskiego w Poznaniu, Aleksandra Fredry 10, 61-701, Poznań, Polska
Introduction and objective:
Obesity is a complex, multifactorial, and largely preventable civilization disease. Almost 70% of the Polish population are overweight or obese, and the use low-calorie diet does not always contribute to weight loss. This review presents recent advances concerning the role of intestinal microbiota in the pathogenesis of obesity.

Brief description of the state of knowledge:
An increasing number of recent studies indicate that gut microbiota may exert a potential effect on the development of obesity. They play an important role in our health, and mediate host physiology and metabolism. The use of modern molecular biology techniques made it possible to study microorganisms inhabiting the intestines and better understand their impact on human health, especially in obesity. Gut microbiota play a significant role in the synthesis and metabolism of many nutrients and metabolites, including short-chain fatty acids (SCFA), lipids, bile acids, amino acids, and vitamins. Intestinal microbiota are the source of lipopolysaccharide (LPS) responsible for the development of systemic inflammation. Recent studies suggest that inflammatory state in overweight or obesity may damage the intestinal barrier and modify the composition of intestinal microbiota.

Understanding of the role of the gut microbiome in the management of weight and health may lead to future revolutionary changes in the treatment of obesity. Based on the result of the examination of patient’s microbiota it will be possible to gradually modify their composition, and use targeted probiotic therapy in the treatment of obesity.

World Health Organization: Obesity and overweight. (10.04.2019).
Kirkpatrick CF, Bolick JP, Kris-Etherton PM et al. Review of current evidence and clinical recommendations on the effects of low-carbo -hydrate and very-low-carbohydrate (including ketogenic) diets for the management of body weight and other cardiometabolic risk factors: A scientific statement from the National Lipid Association Nutrition and Lifestyle Task Force. J Clin Lipidol. 2019;13: 689–711.
Shahmanesh M, Harling G, Coltart CEM, et al. From the micro to the macro to improve health: microorganism ecology and society in teaching infectious disease epidemiology. Lancet Infect Dis. 2020; 20(6): 142–147.
Godoy-Vitorino F. Human microbial ecology and the rising new medicine. Ann Transl Med. 2019; 7(14):342.
Li J, Jia H, Cai X, et al. An integrated catalog of reference genes in the human gut microbiome. MetaHIT Consortium. Nat Biotechnol. 2014; 32(8): 834–41.
Hoffmann C, Dollive S, Grunberg S, et al. Archaea and fungi of the human gut microbiome: correlations with diet and bacterial residents. PLoS ONE. 2013; 8:e66019.
Abell GCJ, Conlon MA, Mcorist AL. Methanogenic archaea in adult human faecal samples are inversely related to butyrate concentration. Microb Ecol Health D. 2006; 18: 154–160.
Li M, Wang B, Zhang M, et al. Symbiotic gut microbes modulate human metabolic phenotypes. Proc Natl Acad Sci USA. 2008; 105: 2117–2122.
Shin JH, Jung S, Kim SA et al. Differential Effects of Typical Korean Versus American-Style Diets on Gut Microbial Composition and Metabolic Profile in Healthy Overweight Koreans: A Randomized Crossover Trial. Nutrients. 2019; 11(10): 2450.
De Filippo C, Cavalieri D, Di Paola M, et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci USA. 2010; 107: 33.
Yuan X, Chen R, Zhang Y, et al. Gut microbiota: effect of pubertal status. BMC Microbiol. 2020; 3; 20(1):334.
Radjabzadeh D, Boer CG, Beth SA, et al. Diversity, compositional and functional differences between gut microbiota of children and adults. Nature research. Scientific reports. 2020; 10: 1040.
Wang J, Kurilshikov A, Radjabzadeh D, et al. Meta-analysis of human genome-microbiome association studies: the MiBioGen consortium initiative. Microbiome. 2018; 8; 6(1): 101.
Goodrich JK, Davenport ER, Clark AG, et al. The Relationship Between the Human Genome and Microbiome Comes into View. Annu Rev Genet. 2017; 51: 413–33.
Hughes DA, Bacigalupe R, Wang J, et al. Genome-wide associations of human gut microbiome variation and implications for causal inference analyses. Nat Microbiol. 2020; 5: 1079–87.
Wacklin P, Tuimala J, Nikkilä J, et al. Faecal microbiota composition in adults is associated with the FUT2 gene determining the secretor status. PLoS One. 2014; 9(4): e94863.
Cheng S, Hu J, Wu X, et al. Altered gut microbiome in FUT2 loss-of-function mutants in support of personalized medicine for inflammatory bowel diseases. Genet Genomics. 2021; 20; 48(9): 771–780.
Turpin W, Bedrani L, Espin-Garcia O, et al. FUT2 genotype and secretory status are not associated with fecal microbial composition and inferred function in healthy subjects. Gut Microbes. 2018; 9(4): 357–368.
Marlicz W, Ostrowska L, Łoniewski I. Flora bakteryjna jelit i jej potencjalny związek z otyłością. Endokrynologia, Otyłość i Zaburzenia Przemiany Materii. 2013; 9: 20–28.
Rowland I, Gibson G, Heinken A, et al. Gut microbiota functions: metabolism of nutrients and other food components. Eur J Nutr. 2018; 57(1): 1–24.
Yoshii K, Hosomi K, Sawane K, et al. Metabolism of Dietary and Microbial Vitamin B Family in the Regulation of Host Immunity. Front Nutr. 2019; 6: 48.
Ohnmacht C. Microbiota, regulatory T cell subsets, and allergic disorders. Allergo J Int. 2016; 25(5): 114–23.
Oziom J, Budrewicz S. Rola mikrobioty jelitowej w patogenezie i przebiegu wybranych schorzeń układu nerwowego. Pol Przegl Neurol. 2019; 15: 1–11.
Kanji S, Fonseka TM, Marshe VS, et al. The microbiome gut brain axis: impication for schizophrenia and antipsychotic induced weight gain. Eur Arch Psychiatry Clin Neurisci. 2018; 268: 3–15.
Megrian D, Taib N, Witwinowski J, et al. One or two membranes? Diderm Firmicutes challenge the Gram-positive/Gram-negative divide. Mol Microbiol. 2020; 113(3): 659–671.
The NIH HMP Working Group, Peterson J, Garges S, Giovanni M, McInnes P, Wang L, et al. The NIH human microbiome project. Genome Res. 2009; 19: 2317e23.
Eckburg PB, Bik EM, Bernstein CN, et al. Diversity of the human intestinal microbial flora. Science. 2005; 308: 1635–1638.
Min BR, Solaiman S, Shange R, et al. Gas¬trointestinal bacterial and methanogenic archaea diversity dynamics associated with condensed tannin-containing pine bark diet in goats using 16S rDNA amplicon pyrosequencing. Int J Microbiol. 2014; 2014: 141909.
Bäckhed F, Crawford PA, O’Donnell D, et al. Postnatal lymphatic partitioning from the blood vasculature in the small intestine requires fasting-induced adipose factor. Proc. Natl. Acad. Sci. USA 2007; 104: 606–611.
Bäckhed F, Manchester J, Semenkovich C, et al. Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. Proc. Natl. Acad. Sci. USA 2007; 104: 979–984.
Ley RE, Bäckhed F, Turnbaugh P, et al. Obesity alters gut microbial ecology. Proc Natl Acad Sci USA. 2005; 102: 11070e5.
Wang CRJ, Zhan R, Zhang L, Wang X. Fecal metabonomics combined with 16S rRNA gene sequencing to analyze the changes of gut microbiota in rats with kidney-yang deficiency syndrome and the intervention effect of You-gui pill. J Ehnopharmacol. 2019; 15; 244:112139.
Amabebe E, Robert FO, Agbalalah T, et al. Microbial dysbiosis-induced obesity: role of gut microbiota in homoeostasis of energy metabolism. British Journal of Nutrition. 2020; 123: 1127–1137.
Bolsega S, Bleich A, Basic M. Synthetic Microbiomes on the Rise-Application in Deciphering the Role of Microbes in Host Health and Disease. Nutrients. 2021; 13(11): 4173.
Gérard P. Gut microbiota and obesity. Cell Mol Life Sci. 2016; 73(1): 147–62.
Gomes AC, Hoffmann C, Mota JF. The human gut microbiota: Metabolism and perspective in obesity. Gut Microbes. 2018; 9(4): 308–325.
Cunningham AL, Stephens JW, Harris DA. Intestinal microbiota and their metabolic contribution to type 2 diabetes and obesity. J Diabetes Metab Disord. 2021; 20(2): 1855–1870.
Wu Y, Wang CZ, Wan JY, et al. Dissecting the Interplay Mechanism between Epigenetics and Gut Microbiota: Health Maintenance and Disease Prevention. Int J Mol Sci. 2021; 22(13): 6933.
Campisciano G, Palmisano S, Cason C, et al. Gut microbiota characterisation in obese patients before and after bariatric surgery. Benef Microbes. 2018; 9(3): 367–373.
Schwiertz A, Taras D, Schäfer K, et al. Microbiota and SCFA in lean and overweight healthy subjects. Obesity. 2010; 18: 190–195.
Zhao H, Xu H, Chen S, et al. Systematic review and meta-analysis of the role of Faecalibacterium prausnitzii alteration in inflammatory bowel disease. J Gastroenterol Hepatol. 2021; 36(2): 320–328.
Janczy A, Kochan Z, Małgorzewicz S. Endotoksemia i zaburzenia bariery jelitowej towarzyszące nadwadze i otyłości. Advancements of microbiology – postępy mikrobiologii. 2019; 4: 427–432.
Erridge C, Attina T, Spickett C. et al. A high-fat meal induces low-grade endotoxemia: evidence of a novel mechanism of postprandial inflammation. Am J Clin Nutr 2007; 86: 1286–1292.
Cani PD, Bibiloni R, Knauf C, et al. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in highfat diet induced obesity and diabetes in mice. Diabetes 2008; 57: 1470–1481.
Rehues P, Rodríguez M, Álvarez J, et al. Characterization of the LPS and 3OHFA Contents in the Lipoprotein Fractions and Lipoprotein Particles of Healthy Men. Biomolecules. 2021; 12(1): 47.
Cani P. Delzenne N. Gut microflora as a target for energy and metabolic homeostasis. Curr Opin Clin Nutr Metab Care. 2007; 10: 729–734.
Cani P, Neyrinck A, Fava F, et al. Selective increases of bifidobacteria in gut microflora improve highfat- diet -induced diabetes in mice through a mechanism associated with en-dotoxaemia. Diabetologia 2007; 50: 2374–2383.
La Serre CB, Ellis CL, Lee J, et al. Propensity to high-fat diet-induced obesity in rats is associated with changes in the gut microbiota and gut inflammation. Am J Physiol Gastrointest Liver Physiol. 2010; 299(2): G440–8.
Mandard S, Zandbergen F, van Straten E, et al. The fasting-induced adipose factor/angiopoietin-like protein 4 is physically associated with lipoproteins and governs plasma lipid levels and adiposity. J Biol Chem 2006; 281: 934–944.
Wardak S. Mikrobiota jelitowa człowieka – jej zróżnicowanie i wpływ na nasze zdrowie. Med Dośw Mikrobiol, 2021; 73: 71–100.
Depommier C, Everard A, Druart C, et al. Supplementation with Akkermansia muciniphila in overweight and obese human volunteers: a proof-of-concept exploratory study. Nature Medicine. 2019; 25: 1096–1103.
Wang JW, Kuo ChH, Kuo FCh et al. Fecal microbiota transplantation: Review and update. J Formos Med Assoc, 2019; 118: 23–31.
Czepiel J, Dróżdż M, Pituch H, et al. Clostridium difficile infection: review. Eur J Clin Microbiol Infect Dis; 2019; 38: 1211–1221.