The use of buccal cells in human biological monitoring
More details
Hide details
Instytut Ekologii Terenów Uprzemysłowionych w Katowicach Dyrektor: dr hab. inż. Jan Skowronek
Ewa Błaszczyk   

Instytut Ekologii Terenów Uprzemysłowionych ul. Kossutha 6; 40-844 Katowice tel. 32 254 60 31 wew. 247
Med Srod. 2012;15(4):129–138
One of the basic methods for determining the degree of environmental risk posed to humans is identification of harmful substances in various environmental elements (air, water, soil, food). In contrast to environmental monitoring human biological monitoring (HBM) enables the estimation of an absorbed dose, general or localized in a specific organ. HBM enables the assessment of exposure to substances which are absorbed by the body via different exposure pathways and with different contaminant carriers. It is based on the measurement of indicators, the so-called biomarkers, in body fluids (blood, urine, saliva, etc.) or in tissues and organs. Biomarkers can be divided into markers of exposure, effects and susceptibility. A particularly useful method is determination of adducts, i.e. carcinogenic compounds (or their metabolites) with proteins or DNA, which are markers of exposure. Biomarkers of biological effects are different cytogenetic changes, including micronuclei. These are extranuclear structures containing fragments of chromatin (arising as a result of DNA breaks) or whole chromosomes (damage to the spindle apparatus during mitosis). Up to now most studies on the DNA adduct levels and micronuclei have been conducted in peripheral lymphocytes. At present, studies using blood, especially in children to restricted to ethical aspects, and therefore tests using epithelial cells from the oral cavity have become more popular. Epithelial cells are the main building material of an epithelial tissue which makes up about 60% of all cells of the human body. The main function of the epithelial tissue is covering and lining of the outer and inner surfaces of the body. Epithelium underwent high specialisation in various parts of the human body, which is associated with its structure and function. Human oral cavity is covered by stratified squamous epithelium, which is comprised of cells called keratinocytes. Oral epithelial cells may differentiate in two directions: towards keratinized or nonkeratinized oral epithelia. In this study, based on our past experience and the available literature, research procedures for the collection of oral epithelial cells and their proper preparation for using them both for the analysis of DNA adducts and micronucleus assay are presented.
Biomarkers and Risk Assessment: Concepts and Principles: Environmental Health Criteria 155. World Health Organization, Geneva 1993.
Piotrowski J.K.: Biomarkery (w:) Seńczuk W. (red.): Toksykologiawspółczesna. Wydawnictwo PZWL, Warszawa 2006: 717-722.
Gonsebatt M.E., del Valle M., Fourtoul T. i wsp.: Micronucleus (MN) frequency in nasal respiratory epithelium from young adults living in urban areas with different levels of air pollution. Mutat. Res. 1997; 379: 198.
Piasecka-Lis M.: Analiza częstości wystepowania mikrojąder w komórkach nabłonkowych w narządach płciowych kobiet. Ginekologia Praktyczna 2008; 1: 36-41.
Esteban M., Castano A.: Non-invasive matrices in human biomonitoring: A review. Environ. Int. 2009; 35: 438-449.
Knasmueller S., Holland N., Wultsch G. i wsp.: Use of nasal cells in micronucleus assays and other genotoxicity studies. Mutagenesis 2011; 26: 231-238.
Rosin M.P.: The use of the micronucleus test on exfoliated cells to identify anti-clastogenic action in humans: a biological marker for the efficacy of chemopreventive agents. Mutat. Res. 1992; 267: 265-276.
Squier C.A.: Biology of oral mucosa and esophagus. J. Natl. Cancer Inst. Monogr. 2001; 29: 7-15.
Kmieć Z.: Histologia i cytofizjologia zęba i jamy ustnej. Urban i Partner, Wrocław 2007: 114-126.
Adams D.: Keratinization of the oral epithelium. Ann. R. Coll. Surg. Engl 1976; 58: 351-358.
Rojas E., Valverde M., Sordo M. i wsp.: DNA damage in exfoliated buccal cells of smokers assessed by the single cell gel electrophoresis assay. Mutat. Res. 1996; 370: 115-120.
Rupa D.S., Eastmond D.A.: Chromosomal alterations affecting the 1cen-1q12 region in buccal mucosal cells of betel quid chewers detected using multicolor fluorescence in situ hybridization. Carcinogenesis 1997; 18(12): 2347-2351.
Hsu T.M., Zhang Y.J., Santella R.M.: Immunoperoxidase quantitation of 4-aminobiphenyl- and polycyclic aromatic hydrocarbon- DNA adducts in exfoliated oral and urothelial cells of smokers and nonsmokers. Cancer Epidemiol. Biomarkers Prev. 1997; 6: 193-199.
Surrallés J., Autio K., Nylund L. i wsp.: Mocelular cytogenetic analysis of buccal cells and lymphocytes from benzene-exposed workers. Carcinogenesis 1997; 4: 817-823.
Montero R., Serrano L., Dávila I. i wsp.: Metabolic Polymorphisms and the Micronucleus Frequency in Buccal Epithelium of Adolescents Living in an Urban Environment. Environ. Mol. Mutagen. 2003; 42: 216-222.
Ergene S., Celik A., Cavas T. i wsp.: Genotoxic biomonitoring study of population residing in pesticide contaminated regions in Göksu Delta: micronucleus, chromosomal aberrations and sister chromatid exchanges. Environ. Int. 2007; 33: 877-885.
Borthakur G., Butryee C., Stacewicz-Sapuntzakis M. i wsp.: Exfoliated buccal mucosa cells as a source of DNA study oxidative stress. Cancer Epidemiol. Biomarkers Prev. 2008; 17: 212- 219.
Westphalen G.H., Menezez L.M., Pra D. i wsp.: In vivo determination of genotoxicity induced by metals from orthodontic appliances using micronucleus and comet assay. Genetics Mol. Res. 2008; 7: 1259-1266.
Thomas P., Holland N., Bolognesi C. i wsp.: Buccal micronucleus cytome assay. Nat. Protoc. 2009; 4: 825-837.
Stone J.G., Jones N.J., McGregor A.D. i wsp.: Development of a human biomonitoring assay using buccal mucosa: comparison of smoking-related DNA adducts in mucosa versus biopsies. Cancer Res. 1995; 55: 1267-1270.
Vaca C.E., Nilsson J.A, Fang J-L. i wsp.: Formation of DNA adducts in human buccal epithelial cells exposed to acetaldehyde and methylglyoxal in vitro. Chem. Biol. Interact. 1998; 108: 197-208.
Santella R.M.: Immunological methods for detection of carcirogen- DNA damage in humans. Cancer Epidemiol. Biomarkers Prev. 1999; 8: 733-739.
Bessette E.E., Goodenough A.K., LangouĎt S. i wsp.: Screening for DNA adducts by data-dependent constant neutral loss - triple stage (MS3) mass spectrometry with a Linear quadrupole ion trap mass spectrometer. Anal. Chem. 2009; 81(2): 809-819.
Zhang Y.J., Hsu T.M., Santella R.M.: Immunoperoxidase detection of polycyclic aromatic hydrocarbon-DNA adducts in oral mucosa cells of smokers and nonsmokers. Cancer Epidemiol. Biomarkers Prev. 1995; 4:133-138.
Romano G., Sgambato A., Boninsegna A. i wsp.: Evaluation of polycyclic aromatic hydrocarbon-DNA adducts in exfoliated oral cells by an immunohistochemical assay. Cancer Epidemiol. Biomarkers Prev 1999; 8: 91-96.
Motykiewicz G., Michalska J., Pendzich J i wsp.: A molecular epidemiology study in women from Upper Silesia, Poland. Toxicol. Lett. 1998; 96: 195-202,.
Suhas S., Ganapathy K.S., Gayatridevi I. i wsp.: Application of the micronucleus test to exfoliated epithelial cells from the oral cavity of beedi smokers, a high-risk group for oral cancer. Muatat. Res. 2004; 561: 15-21.
Gabriel H.E., Crott J.W., Ghandour H. i wsp.: Chronic cigarette smoking is associated with diminished folate status, altered folate form distribution, and increased genetic gamage in the buccal mucosa of healthy adults. American Society for Nutrition 2006; 83: 835-841.
El-Setouhy M., Loffredo C.A., Radwan G. i wsp.: Genotoxic effects of waterpipe smoking on the buccal mucosa cells. Mutat. Res. 2008; 655: 36-40.
Haveric A., Haveric S., Ibrulj S.: Micronuclei frequencies in peripheral blood and buccal exfoliated cells of young smokers and non-smokers. Toxicology Mechanisms and Methods 2010; 20: 260-266.
Chandirasekar R., Suresh K., Jayakumar R. i wsp.: XRCC1 gene variants and possible links with chromosome aberrations and micronucleus in active and passive smokers. Environ. Tox. Pharmacol. 2011; 32: 185-192.
Nersesyan A., Muradyan R., Kundi M. i wsp.: Impact of smoking on the frequencies of micronuclei and other nuclear abnormalities in exfoliated oral cells: a comparative study with different cigarette type. Mutagenesis 2011; 26: 295-301.
Karahalil B., Karakaya A.E., Burgaz S.: The micronucleus assay in exfoliated buccal cells: application to occupational exposure to polycyclic aromatic hydrocarbons. Mutat. Res. 1999; 442: 29-35.
Lewińska D., Palus J., Stępnik M.: Micronucleus frequency in peripheral blood lymphocytes and buccal mucosa cells of cooper smelter workers, with special regard to arsenic exposure. Int. Arch. Occup. Environ. Health. 2007; 80: 371-380.
Celik A., Kanik A.: Genotoxicity of occupational exposure to wood dust: micronucleus frequency and nuclear changes in exfoliated buccal mucosa cells. Environ. Mol. Mutagen. 2006; 47: 693-698.
Celik A., Cavas T., Ergene-Gűzőkara S.: Cytogenetic biomonitoring in petrol station attendants: micronucleus test in exfoliated buccal cells. Mutagenesis 2003; 18: 417-421.
Hallare A.V., Gervasio M.K.R., Gervasio P.L.G. i wsp.: Monitoring genotoxicity among gasoline attendants and traffic enforces in the City of Manila using the micronucleus assay with exfoliated epithelial cells. Environ. Monit. Assessment 2009; 156: 331-341.
Cavalo D., Ursini C.L., Omodeo-Sale` E. i wsp.: Micronucleus induction and FISH analysis in buccal cells and lymphocytes of nurses administering antineoplastic drugs. Mutat. Res. 2007; 628: 11-18.
Celik A., Diler S.B., Eke D.: Assessment of genetic damage in buccal epithelium cells of painters: micronucleus, nuclear changes, and repair index. DNA Cell Biol. 2010; 6: 277-284.
Diler S.B., Celik A.: Cytogenetic biomonitoring of carpet fabric workers using micronucleus frequency, nuclear changes, and the calculation of risk assessment by repair index in exfoliated mucosa cells. DNA Cell Biol. 2011; 10: 821-827.
Pastor S., Gutiérrez S., Creus A., i wsp.: Micronuclei in peripheral blood lymphocytes and buccal epithelial cells of Polish farmers exposed to pesticides. Mutat. Res. 2001; 495: 147-156.
Martinez V., Creus A., Venegas W. i wsp.: Micronuclei assessment in buccal cells of people environmentally exposed to arsenic in northern Chile. Toxicol. Lett. 2005; 155: 319-327.
Yadav A.S., Sharma M.K.: Increased frequency of micronucleated exfoliated cells among humans exposed in vivo to mobile.
telephone radiation. Mutat. Res. 2008; 650: 175-180.
Hintzsche H., Stopper H.: Micronucleus frequency in buccal mucosa cells of mobile phone users. Toxicol. Lett. 2010: 193: 124-130.
Ribeiro D.A., Angelieri F.: Cytogenetic biomonitoring of oral mucosa from adults exposed to dental X-rays. Radiat. Med. 2008; 26: 325-330.
Bloching M., Reich W., Schubert J. i wsp.: Micronucleus rate of buccal moucosa epithelial cells in relation to oral hygiene and dental factors. Oral Oncol. 2008; 44: 220-226.
Ramirez A., Saldanha P.R.: Micronucleus investigation of alcoholic patients with oral carcinomas. Genet. Mol. Res. 2002; 1: 246-260.
Belowska J., Frączek A., Rał M. i wsp.: Wstępne badania nad częstością występowania mikrojąder w komórkach nabłonka śluzowego jamy ustnej u osób chorych na nowotwory krtani. Przegląd lekarski 2004; 64: 248-250.
Chatterjee S., Dhar S., Sengupta B. i wsp.: Cytogenetic monitoring in human oral cancers and other oral phatology: the micronucleus test in exfoliated buccal cells. Toxicol. Mechan.
Thomas P., Hecker J., Faunt J. i wsp.: Buccal micronucleus cytome biomarkers may be associated with Alzheimer’s disease. Mutagenesis 2007; 22 (6): 371-379.
Thomas P., Harvey S., Gruner T. i wsp.: The buccal cytome and micronucleus frequency is substantially altered in Down’s syndrome and normal ageing compared to young healthy controls. Mutat. Res. 2008; 638: 37-47.
Holland N., Bolognesi C., Kirsch-Volders M. i wsp.: The micronucleus assay in human buccal cells as a tool for biomonitoring DNA damage: the HUMN project perspective on current status and knowledge gaps. Mutat. Res. 2008; 659: 93-108.
Scheuplein R., Charnley G., Dourson M.: Differential sensitivity of children and adults to chemical toxicity. I. Biological asis. Regul. Toxicol. Pharmacol. 2002; 35: 429-447.
Wild C.P., Kleinjans J.: Children and increased susceptibility to environmental carcinogens: evidence or empathy? Cancer Epidemiol. Biomarkers Prev. 2003; 12: 1389-1394.
Landrigan P.J., Kimmel C.A., Correa A. i wsp.: Children’s health and the environment: public health issues and challenges for risk assessment. Environ. Health Perspect. 2004; 112: 257-265.
Sobol M.V., Bezrukov V.F.: The micronuclei frequencies in the buccal cell epithelium of young people of different age and gender in Ukraine. Tsitol. Genet. 2007; 41: 56-58.
Huen K., Gunn L., Duramad P. i wsp.: Application of a geographic information system to explore associations between air pollution and micronucleus frequencies in African American children and adults. Environ. Mol. Mutagen. 2006; 47: 236-246.
Holland N., Fucic A., Merlo D.F. i wsp: Micronuclei in neonates and children: effects of environmental, genetic, demographic and disease variables. Mutagenesis 2011; 26: 51-56.
Kapka L., Kwapuliński J., Mielżyńska D.: Test mikrojądrowy w komórkach nabłonkowych jamy ustnej jako nieinwazyjny biomarker narażenia środowiskowego na ołów u dzieci. Medycyna 60. Gonsebatt M.E., del Valle M., Fourtoul T. i wsp.: Micronucleus (MN) frequency in nasal respiratory epithelium from young adults living in urban areas with different levels of air pollution. Mutat. Res. 1997; 379: 198.
Chen C., Arjomandi M., Qin H. i wsp.: Cytogenetic damage in buccal epithelia and peripheral lymphocytes of young healthy individuals exposed to ozone. Mutagenesis 2006; 21: 131- 137.
Wronka I., Schmager J., Borowiecka A.: The population research on incidence of micronuclei in the cells of oral epithelium. Scripta Periodica 2000; III, 3.
Moore L, Wiencke J., Eng C. i wsp.: Evaluation of buccal cell collection protocols for genetic susceptibility studies. Biomarkers 2001; 6 (6): 448-454.
Mulot C., Stu
Garcia-Closas M., Moore L.E., Rabkin C.S. i wsp.: Quantitation of DNA in buccal cell samples collected in epidemiological studies. Biomarkers 2006; 11(5): 472-479.
Aidar M.: A simple and cost-effective protocol for DNA isolation from buccal epithelial cells. Braz. Dent. J. 2007; 18(2):. 148-152.
Eren K., Özmerių N., SĢardasĢ S.: Monitoring of buccal epithelial cells by alkaline comet assay (single cell gel electrophoresis technique) in cytogenetic evaluation of chlorhexidine. Clin. Oral. Invest. 2002; 6:150-154.
Mondal N.K., Bhattacharya P., Ray M.R.: Assessment of DNA damage by comet assay and fast halo assay in buccal epithelial cells of Indian women chronically exposed to biomass smoke. Int. J. Hygiene Environ. Health 2011; 214: 311- 318.
Halfon P., Ouzan D., Khiri H. i wsp.: Detection of IL28B SNP DNA from buccal epithelial cells, small amounts of serum, and dried blood spots. PloS ONE 2012; 7(3): e33000.
Sridhar S., Schembri F., Zeskind J. i wsp.: Smoking-induced gene expression changes in the bronchial airway are reflected in nasal and buccal epithelium. BMC Genomics 2008, 9: 259-272.
da Silva A.E., Rados P.V., da Silva Lauxen I. i wsp.: Nuclear changes in tongue epithelial cells following panoramic radiography. Mutat. Res. 2007; 632: 121-125.
Martins R.A., da Silva Gomes G.A., Aguiar Jr. O. i wsp.: Biomonitoring of oral epithelial cells in petrol station attendants: Comparison between buccal mucosa and lateral border of the tongue. Environ. Int. 2009; 35: 1062-1065.
Stich H.F., Stich W., Parida B.B.: Elevated frequency of micronucleated cells in the buccal cells mucosa of individuals at high risk for oral cancer: betel quid chewers. Cancer Lett. 1982; 17: 125-134.
Rajkokila K., Shajithanoop S., Usharani M.V.: Nuclear anomalies in exfoliated buccal epithelial cells of petrol station attendants in Tamilnadu, South India. J. Med. Genet. Genom. 2010; 2(2): 18-22.
Nersesyan A., Kundi M., Atefie K. i wsp.: Effect of staining procedures on the results of micronucleus assays with exfoliated oral mucosa cells. Cancer Epidemiol. Biomarkers Prev. 2006;15(10): 1835-1840.