PRACA ORYGINALNA
Wpływ zastosowania biodiesla oraz jego mieszanek z olejem napędowym, na emisję lotnych węglowodorów aromatycznych
 
Więcej
Ukryj
1
Zakład Szkodliwości Chemicznych i Toksykologii Genetycznej Instytutu Medycyny Pracy i Zdrowia Środowiskowego Kierownik Zakładu: dr hab. n. med. A. Sobczak, Dyrektor Instytutu: dr n. med. P.Z. Brewczyński
2
Zakład Badań Silników Instytutu Badań i Rozwoju Motoryzacji BOSMAL Sp. z o.o. Kierownik Zakładu: dr P. Bielaczyc, Prezes Zarządu: dr hab. inż. A. Świątek
3
Zakład Chemii Ogólnej i Nieorganicznej, Wydział Farmaceutyczny z Oddziałem Medycyny Laboratoryjnej Śląski Uniwersytet Medyczny, Kierownik Zakładu: prof. dr hab. n. med. A. Sobczak, Dziekan Wydziału: dr hab. n. farm. S. Boryczka
AUTOR DO KORESPONDENCJI
Adam Prokopowicz   

Instytut Medycyny Pracy i Zdrowia Środowiskowego ul. Kościelna 13, 41-200 Sosnowiec
 
Med Srod. 2013;16(4):57–63
 
STRESZCZENIE ARTYKUŁU
Wstęp:
W ostatnim czasie kładzie się nacisk na stosowanie paliw odnawialnych a biodiesel jest atrakcyjną alternatywą dla konwencjonalnego oleju napędowego. Z uwagi na fakt, że wpływ zawartości biodiesla na emisję poszczególnych związków chemicznych nie jest w pełni scharakteryzowany, ocenialiśmy emisję lekkich węglowodorów aromatycznych w zależności od ilości dodanego biodiesla w konwencjonalnym oleju napędowym.

Materiał i metody:
W pracy przeprowadzono badania emisji benzenu, etylobenzenu, toluenu i ksylenów podczas nowego europejskiego cyklu jezdnego NEDC samochodu osobowego wyposażonego w silnik Diesla z zastosowaniemmpaliw o następującym składzie: 100% oleju napędowegom(B0), 100% estrów metylowych kwasów tłuszczowych oleju rzepakowego (B100), 7, 15, i 30% bioestrumw oleju napędowym (B7, B15, B30), oraz 30% uwodornionychmolejów roślinnych w oleju napędowym (HVO30).

Wyniki:
Spośród oznaczanych związków benzen i toluenbyły emitowane w największej ilości. Wyższe emisje oznaczanychwęglowodorów występowały podczas cyklu miejskiegow porównaniu do cyklu pozamiejskiego testu,przy czym zaznaczył się wyraźny trend w kierunku wzrostutych stężeń wraz ze wzrostem zawartości w paliwiebioestru. Natomiast dodatek HVO znacząco obniżył emisjęwiększości oznaczanych związków nawet w porównaniudo konwencjonalnego oleju napędowego. W cyklupozamiejskim emisja oznaczanych węglowodorów byłaznacznie niższa i porównywalna dla większości badanychpaliw. Jednak w odniesieniu do konwencjonalnego olejunapędowego zaobserwowano obniżenie emisji badanychzwiązków dla paliw z zawartością biodiesla.

Wnioski:
Wyniki badań wskazują na wzrost emisji zwłaszcza benzenui toluenu w cyklu miejskim oraz jej spadek w cyklupozamiejskim testu NEDC wraz ze wzrostem zawartościestrów metylowych kwasów tłuszczowych w oleju napędowym.Na emisję w cyklu miejskim największy wpływmiały prawdopodobnie warunki związane z zimnym rozruchemsilnika występujące podczas tego cyklu. Powstawanieszkodliwych węglowodorów aromatycznych możnatłumaczyć większymi gęstościami paliwa z dodatkiem biodieslaw porównaniu do gęstości samego oleju napędowegolub także występowaniem w nich większej ilościwiązań nienasyconych. Dodatek HVO do oleju napędowegomiał najbardziej pozytywny wpływ na emisję badanychwęglowodorów aromatycznych_


Introduction:
Background: In recent times, the emphasis is placed on the use of renewable fuels as well as biodiesel as an attractive alternative to conventional diesel fuel. Due to the fact that the impact of biodiesel on various chemical compounds exhaust emissions is not completely characterized, we have evaluated the emissions of volatile aromatic hydrocarbons in relation to biodiesel content in conventional diesel fuel.

Material and Methods:
In thestudy we have assessed the emission of benzene, toluene, ethylbenzene and xylens during New European Driving Cycle NEDC for a passenger car with a diesel engine using the following fuels: 100% diesel fuel (B0), 100% rapeseed methyl esters (B100), 7, 15 and 30% rapeseed methyl esters in diesel fuel (B7, B15, B30), and 30% hydrotreated vegetable oil in diesel fuel (HVO30).

Results:
Among all determined compounds, benzene and toluene were emittedin the largest quantities. Higher emissions were determinedduring urban driving cycle then during extraurbandriving cycle. A clear trend was observed whenalong with increasing amount of added rapeseed methylesters the emission increased. However, additive of HVOdecreased the emission of the most volatile aromaticcompounds even when compared to conventional dieselfuel. During extra-urban driving cycle the emission wassignificantly lower and comparable for most fuels tested.Nevertheless in the context of conventional diesel fuel,lower emission for fuels with biodiesel was observed.

Conclusions:
The results have indicated the increase in benzeneand toluene exhaust emissions mostly during urban drivingcycle and its decrease during extra-urban driving cyclein NEDC test with increasing content of fatty acidsmethyl esters in diesel fuel. The emission in urban cyclewas probably influenced by cold-start condition duringthis cycle. Generation of volatile aromatic hydrocarbonsmay be related to higher density of fuel with biodiesel incomparison to density of diesel oil or higher amount ofunsaturated bounds in these fuels. Additives of HVO todiesel fuel appeared to be very effective on exhaust emissionof aromatic hydrocarbons_

FINANSOWANIE
Źródło finansowania: Praca była finansowana ze środków MNiSW w ramach grantu nr N N404 311540.
 
REFERENCJE (20)
1.
Roszkowski A.: Biodiesel w UE i Polsce – obecne uwarunkowania i perspektywy. Problemy Inżynierii Rolniczej 2012 (VII-IX); 77(3): 65-78.
 
2.
Kulczycki A., Dzięgielewski W.: Biopaliwa lotnicze oparte na biowęglowodorach i innych biokomponentach. J. KONBiN 2011; 1(17): 165-178.
 
3.
McCormick R., L.: The Impact of Biodiesel on Pollutant Emissions and Public Health. 2007, Inhal. Toxicol. 19 s. 1033-1039.
 
4.
Xue J., Grift T. E., Hansen A. C.: Effect of biodiesel on engine performances and emissions. Renew. Sustain. Energy Rev. 2011; 15: 1098-1116.
 
5.
Snyder R., Andrews L. S.: Toxic effects of solvents and vapors. (w:) Klassen C. D. (ed.): Casarett and Doull’s Toxicology: The Basic Science f Poisons. Fifth Edition. McGraw-Hill, International Edition, 1995: 737-771.
 
6.
Baan R., Grosse Y. Straif K. i wsp.: A review of human carcinogens- Part F: Chemical agents and related occupations. Lancet Oncol. 2009; 10(12): 1143-1144.
 
7.
Toxicological profile for ethylbenzene. Agency for Toxic Substances and Disease Registry. CDC Atlanta, 2010.
 
8.
Bielaczyc, P., Merkisz, J., and Pielecha, J. Exhaust emission from diesel engine during cold start in ambient temperature conditions. SAE paper 2000-05-0316.
 
9.
Bielaczyc P., Pajdowski P.: Investigation of cold start emissions from passanger car with DI diesel engine using the modal analysis method. J. Kones Combust. Engines 2001; 8(1-2): 100-108.
 
10.
Karavalakis G., Bakeas E., Fontaras G.i wsp.: Effect of biodiesel origin on regulated and particle-bound PAH (polycyclic aromatic hydrocarbon) emissions from a Euro 4 passenger car. Energy 2011; 36: 5328-5337.
 
11.
Macor A., Avella F., Faedo D.: Effects of 30% v/v biodiesel/diesel fuel blend on regulated and unregulated pollutant emissions from diesel engines. Appl. Energy 2011; 88: 4989-5001.
 
12.
Fontaras G., Karavalakis G., Kousoulidou M. i wsp.: Effects of biodiesel on passanger car fuel consumption, regulated and non-regulated pollutant emissions over legislated and real work driving cycles. Fuel 2009; 88: 1608-1617.
 
13.
Payri F., Bermudez V.R., Tormos B., i wsp.: Hydrocarbon emissions speciation in diesel and biodiesel exhausts. Atm. Environ. 2009; 43: 1273-1279.
 
14.
Magara-Gomez K.T., Olson M.R., Okuda T. i wsp.: Sensitivity of hazardous air pollutant emissions to the combustion of blends of petroleum diesel and biodiesel fuel. Atm. Environ. 2012; 50: 307-313.
 
15.
Correa S.M., Arbilla G.: Aromatic hydrocarbons emissions in diesel and biodiesel exhaust. Atm. Environ. 2006; 40: 6821- 6826.
 
16.
Turrio – Baldassarri L., Battistelli C.L., Conti L., i wsp.: Emission comparison of Urban bus engine fueled with diesel oil and “biodiesel” blend. Sci. Tot. Environ. 2004; 327: 147- 162.
 
17.
Sharp C., Howell S., Jobe.: The effect of biodiesel fuel on transient emissions from modern diesel engines, Part II: Unregulated emissions and chemical characterization. SAE ech. Pap. Ser. 2000a, No 2000-01-1968.
 
18.
Geyer S. M., Jacobus M. J., Lestz S. S.: Comparison of diesel engine performance and emissions from neat and transesterified vegetable oils. Trans. Am. Soc. Agric. Eng. 1984; 27: 375-381.
 
19.
Di Y., Cheung C.S., Huang Z.: Experimental investigation on regulated and unregulated emissions of a diesel engine fueled with ultra-low sulfur diesel fuel blended with biodiesel with waste cooking oil. Sci. Tot. Environ. 2009; 407: 835-846.
 
20.
Zhu L., Cheung C. S. Zhang W. G. i wsp.: Effects of ethanolbiodiesel blends and diesel oxidation catalyst (DOC) on particulate and unregulated emissions. Fuel 2013; 113: 690-696.
 
eISSN:2084-6312
ISSN:1505-7054