PRACA ORYGINALNA
Wielopierścieniowe węglowodory aromatyczne i pozostałości środków ochrony roślin w sokach brzozowych z terenu rolniczego
 
Więcej
Ukryj
1
Katedra Inżynierii Produkcji Rolno-Spożywczej, Wydział Biologiczno-Rolniczy, Uniwersytet Rzeszowski; kierownik Katedry: prof. dr hab. inż. S. Sosnowski
2
Małopolskie Centrum Monitoringu Żywności, Katedra Technologii Gastronomicznej i Konsumpcji, Wydział Technologii Żywności, Uniwersytet Rolniczy w Krakowie; kierownik Katedry: prof. dr hab. inż. E. Cieślik
3
Zakład Botaniki, Pozawydziałowy Zamiejscowy Instytut Biotechnologii Stosowanej i Nauk Podstawowych, Uniwersytet Rzeszowski; kierownik Zakładu: dr hab. Ł. Łuczaj
4
Zakład Ekotoksykologii, Pozawydziałowy Zamiejscowy Instytut Biotechnologii Stosowanej i Nauk Podstawowych, Uniwersytet Rzeszowski; kierownik Zakładu: dr hab. S. Sadło
AUTOR DO KORESPONDENCJI
Maciej Bilek   

Katedra Inżynierii Produkcji Rolno-Spożywczej Wydział Biologiczno-Rolniczy Uniwersytet Rzeszowski ul. Zelwerowicza 4, 35-601 Rzeszów tel. 663-196-847
 
Med Środow. 2017;20(1):17–26
SŁOWA KLUCZOWE
STRESZCZENIE ARTYKUŁU
Wstęp:
Soki drzewne pobierane są wczesną wiosną, zarówno przez indywidualnych konsumentów do bezpośredniego spożycia, jak również jako surowiec do produkcji napojów dla przemysłu spożywczego. W Polsce najpopularniejszym sokiem drzewnym na przestrzeni wieków był i nadal pozostaje sok brzozowy, będący źródłem wielu składników odżywczych. W związku z rozwojem cywilizacji, pogarszającym stan środowiska naturalnego, istnieje coraz większe ryzyko skażenia soków drzewnych przez substancje szkodliwe. Celem niniejszej pracy było oznaczenie zawartości 13 wielopierścieniowych węglowodorów aromatycznych oraz pozostałości 40 środków ochrony roślin w sokach drzewnych.

Materiał i metody:
Sok brzozowy pobrano z 20 osobników gatunku brzoza zwisła (Betula pendula Roth.), rosnących na terenie rolniczym w południowo-wschodniej Polsce. Zawartość wielopierścieniowych węglowodorów aromatycznych oraz pozostałości środków ochrony roślin oznaczono z wykorzystaniem techniki GC/MS.

Wyniki:
Analiza wykazała obecność śladowych ilości pięciu pestycydów, tzn. metiokarbu, propoksuru, karbarylu, parationu oraz 4,4’-DDD. Wsokach brzozowych odnotowano także zawartość lekkich, wielopierścieniowych węglowodorów aromatycznych, tj. fluorenu, fenantrenu, pirenu, chryzenu, oraz w sokach pojedynczych osobników: antracenu, benzo[a]antracenu i acenaftylenu.

Wnioski:
Biorąc pod uwagę obowiązujące normy, soki brzozowe pochodzące z terenów rolniczych nie stwarzają ryzyka zdrowotnego pod względem zawartości pozostałości środków ochrony roślin oraz wielopierścieniowych węglowodorów aromatycznych, należy jednak spodziewać się znacznego zagrożenia dla zdrowia konsumentów w przypadku pobierania soków brzozowych z terenów o bardziej intensywnym stopniu antropopresji.


Introduction:
Tree saps are tapped in early spring, both by individual consumers for direct consumption, and as a raw material for the production of beverages by the food industry. In Poland, for centuries and today, the most common has been birch tree sap - the source of nutrients. As a result of the developing civilization, which destroys natural environment, there is an increasing risk of contamination of tree saps by harmful substances. The objective of this work was to estimate the presence of 13 polycyclic aromatic hydrocarbons (PAHs) and residues of 48 chemical plant protection products in spring saps.

Material and Methods:
Birch tree sap was tapped from 20 silver birch trees (Betula pendula Roth.) that grow in a agricultural area in the south-east part of Poland. The presence of polycyclic aromatic hydrocarbons and residues of chemical plant protection products was examined using GC/MS technique.

Results:
Birch sap analysis revealed trace amounts of methiocarb, propoxur, carbaryl, parathion and 4,4’-DDD in the samples. So called light PAHs, that is, fluorene, phenanthrene, pyrene, chrysene, and in individual cases: anthracene, benzo[a]anthracene and acenaphtylene were also found in the sap.

Conclusions:
Taking into account the standards, fresh birch saps tapped from trees growing in the agricultural area do not pose any health risk for consumers, although serious health risk should be expected in the case of birch sap collected from areas of intense anthropopressure

FINANSOWANIE
Źródło finansowania badań: DS-3707/15/KTGiK
 
REFERENCJE (41)
1.
Svanberg I., Sõukand R., Łuczaj Ł. i wsp.: Uses of tree saps in northern and eastern parts of Europe. Acta Soc Bot Pol 2012; 81: 343-357.
 
2.
Peev C., Dehelean C., Mogosanu C. i wsp.: Spring drugs of Betula pendula Roth.: Biologic and pharmacognostic evaluation. Studia Univ VG – SSV 2010; 20: 41-43.
 
3.
Bilek M., Stawarczyk K., Gostkowski M. i wsp.: Mineral content of tree saps from subcarpathian region. J Elem 2016; 21: 669-679.
 
4.
Ernst W.H.O., Nelissen H.J.M.: Bleeding sap and leaves of silver birch (Betula pendula) as bioindicators of metal contaminated soils. Int J Environ Pollut 2008; 33:160-172.
 
5.
Bilek M., Stawarczyk K., Kuźniar P. i wsp.: Evaluation of inorganic anions content in the tree saps. J Elem 2016; 21: 1277-1288.
 
6.
Prajapati S.K., Tripathi B.D.: Biomonitoring seasonal variation of urban air polycyclic aromatic hydrocarbons (PAHs) using Ficus benghalensis leaves. Environ Pollut 2008; 151: 543-548.
 
7.
Murakami M., Abe M., Kakumoto Y. i wsp.: Evaluation of ginkgo as a biomonitor of airborne polycyclic aromatic hydrocarbons. Atmos Environ 2012; 54: 9-17.
 
8.
Wang Z., Liu Z., Yang Y.: Distribution of PAHs in tissues of wetland plants and the surrounding sediments in the Chongming wetland, Shanghai, China. Chemosphere 2012; 89: 221-227.
 
9.
Binet P., Portal J.M., Leyval C.: Dissipation of 3-6-ring polycyclic aromatic hydrocarbons in the rhizosphere of ryegrass. Soil Biol Biochem 2000; 32:2011-2017.
 
10.
Yin H., Tan Q., Chen Y. i wsp.: Polycyclic aromatic hydrocarbons (PAHs) pollution recorded in annual rings of gingko (Gingko biloba L.): Determination of PAHs by GC/MS after accelerated solvent extraction. Microchem 2011; J 97:138- 143.
 
11.
Kuang Y., Li Y., Li J. i wsp.: Temporal patterns and potential sources of polycyclic aromatic hydrocarbons in xylem of Pinus kwangtungensis. Atmos Pollut Res 2014; 5: 520-527.
 
12.
Oleszczuk P., Baran S.: Polycyclic aromatic hydrocarbons content in shoots and leaves of willow (Salix viminalis) on the sewage sludge-amended soil. Water Air Soil Pollut 2005; 168:91-111.
 
13.
Lin D., Zhu L., He W. i wsp.: Tea plant uptake and translocation of polycyclic aromatic hydrocarbons from water and around air. J Agric Food Chem 2006; 54: 3658-3662.
 
14.
Odukkathil G., Vasudevan N.Ł Toxicity and bioremediation of pesticides in agricultural soil. Rev Environ Sci Biotechnol 2013ł 12: 421-444.
 
15.
Tarcau D., Cucu-Man S., Boruvkova J. i wsp.: Organochlorine pesticides in soil, moss and tree-bark from North-Eastern Romania. Sci Total Environ 2013; 456-457: 317-324.
 
16.
Sammarie A.I.A., Akela A.A.: Distribution of injected pesticides in date palm trees. Agric Biol J N Am 2011; 12: 1416- 1426.
 
17.
Sadowska-Rociek A., Surma M., Cieślik E.: Application of QuEChERS method for simultaneous determination of pesticide residues and PAHs in fresh herbs. Bull Environ Contam Toxicol 2013; 4:508-513.
 
18.
Chylkova M., Tomaskova M., Svancara,I. I wsp.: Determination of methiocarb pesticide using differential pulse voltammetry with a boron-doped diamond electrode. Anal Method 2015; 7:4671-4677.
 
19.
Bereś P.K.: Usefulness of selected seed dressing insecticides for integrated maize (Zea mays L.) protection against friut fly (Oscinella frit L.). Acta Sci. Pol – Agricultura 2011; 10: 15-23.
 
20.
Piechowicz B., Grodzicki P., Piechowicz I. i wsp.: Beer as olfactory attractant in the fight against harmful slugs Arion lusitanicus Mabille 1868. Chem Didact Ecol Metrol 2014; 19: 119-125.
 
21.
Kozłowski J., Jaskulska M., Kozłowski R.J.: Possible methods of reducing damage to plants caused by Arion vulgaris using selected plant protection substances and plant extracts. Prog Plant Prot 2015; 55: 102-106.
 
22.
Singh B.P., Lokesh Singhal L., Chauhan R.S.: Immunotoxicity of carbaryl in chicken. Indian J Exp Biol 2007; 45: 890- 895.
 
23.
Feng K., Yu B.Y., Ge D.M. i wsp.: Organochlorine pesticide (DDT and HCH) residues in the Taihu Lake Region and its movement in soil-water system – I. Field survey of DDT and HCH residues in ecosystem of the region Chemosphere 2003; 50: 683-687.
 
24.
Kata M., Rao S., Mohan K.R.: Spatial distribution, ecological risk evaluation and potential sources of organochlorine pesticides from soils in India. Environ Earth Sc 2015; 74: 4031- 4038.
 
25.
Biegańska J., Harat A., Zyzak W.: Neutralizing of waste pesticides from dumping grounds by means of explosive burning. Inż Ekol 2013; 43: 13-20.
 
26.
EU Pesticides database, ec.europa.eu/food/plant/pestic... eu-pesticides-database/public; dostęp z dnia 30.10.2016.
 
27.
Wang F., Jiang X., Bian Y. i wsp.: Organochlorine pesticides in soils under different land usage in the Taihu Lake region, China. J Environ Sci 2007; 19:584-590.
 
28.
Jánská M., Hajslová J., Tomaniová M. i wsp.: Polycyclic aromatic hydrocarbons in fruits and vegetables grown in the Czech republic. Bull Environ Contam Toxicol 2006; 77: 492- 499.
 
29.
Sojinu O.S., Sonibare O.O., Ekundayo O. i wsp.: Biomonitoring potentials of polycyclic aromatic hydrocarbons (PAHs) by higher plants from an oil exploration site, Nigeria. J Hazard Mater 2010; 184: 759-764.
 
30.
Salehi-Lisar S.Y., Deljoo S., Harzandi A.M.: Fluorene and Phenanthrene Uptake and Accumulation by Wheat, Alfalfa and Sunflower from the Contaminated Soil. Int J Phytoremediation 2015; 17: 1145-1152.
 
31.
Michalik P.: Low emission -aware of the risk resulting from it among the various social groups on the example of wszechnica mazurska in olecko students. Environ 2009; 39:126-132.
 
32.
Rozporządzenie Ministra Środowiska z dnia 21 lipca 2016 r. w sprawie sposobu klasyfikacji stanu jednolitych częściwód powierzchniowych oraz środowiskowych norm jakości dla substancji priorytetowych, Dz.U. 2016 poz. 1187.
 
33.
United States Environmental Protection Agency (USEPA): Method 8100, Polynuclear Aromatic Hydrocarbons 1986; https://www.epa.gov/sites/prod... 8100.pdf, dostęp z dnia 30.10.2016.
 
34.
European Food Safety Authority (EFSA): Findings of the EFSA data collection on polycyclic aromatic hydrocarbons in food; http://www.efsa.europa.eu/en/e.... pdf, dostęp z dnia 30.10.2016.
 
35.
Directive 2013/39/EU of the European Parliament and of the Council of 12 August 2013 amending Directives 2000/60/EC and 2008/105/EC as regards priority substances in the field of water policy Text with EEA relevance; http://eur-lex.europa.eu/legal... 3A32013L0039, dostęp z dnia 30.10.2016.
 
36.
Rozporządzenie Ministra Środowiska z dnia 27 listopada 2002 r. w sprawie wymagań, jakim powinny odpowiadać wody powierzchniowe wykorzystywane do zaopatrzenia ludności w wodę przeznaczoną do spożycia. Dz U 204, poz. 1728.
 
37.
Commission Regulation (EU) No 835/2011 of 19 August 2011 amending Regulation (EC) No 1881/2006 as regards maximum levels for polycyclic aromatic hydrocarbons in foodstuffs; https://www.fsai.ie/uploadedFi..., dostęp z dnia 30.10.2016.
 
38.
Flavia De N., Lancellotti C., Prati M.V. i wsp.: Biomonitoring of PAHs by using Quercus ilex leaves: Source diagnostics and toxicity assessment. Atmos Environ 2011; 45:1428- 1433.
 
39.
Pandey M.R., Huarong Guo H.: Evaluation of cytotoxicity, genotoxicity and embryotoxicity of insecticide propoxur using flounder gill (FG) cells and zebrafish embryos. Toxicol In Vitro 2014; 28: 340-353.
 
40.
Salehi-Lisar S.Y., Deljoo S.: The physiological effect of fluorene on Triticum aestivum Medicago sativa, and Helianthus annus. Cogent Food Agric 2015; 1:1020189.
 
41.
Bilek M., Kuźniar P., Cieślik E.: Kadm w pitnym soku brzozowym z terenu rolniczego. Med Środ – Env Med. 2016; 19: 31-35.
 
eISSN:2084-6312
ISSN:1505-7054