REVIEW PAPER
Impact of genetic polymorphisms and gene-environment interactions assesing health efects of environmental and occupational exposure to lead
 
More details
Hide details
1
Pracownia Toksykologii Genetycznej, Instytut Medycyny Pracy i Zdrowia Środowiskowego w Sosnowcu, Kierownik Pracowni: dr n. med. Natalia Pawlas
2
Pracownia Audiologii i Hałasu, Instytut Medycyny Pracy i Zdrowia Środowiskowego w Sosnowcu, Kierownik Pracowni: dr hab. n. med. Krystyna Pawlas
3
Katedra i Zakład Higieny, Akademia Medyczna we Wrocławiu, Kierownik Katedry: dr hab. n. med. Krystyna Pawlas
CORRESPONDING AUTHOR
Natalia Pawlas   

Pracownia Toksykologii Genetycznej Instytut Medycyny Pracy i Zdrowia Środowiskowego ul. Kościelna 13, 41-200 Sosnowiec
 
Med Srod. 2010;13(4):75–80
 
KEYWORDS
ABSTRACT
Health effects of exposure to xenobiotics, e.g. lead, differ between individuals. They are mainly influenced by xenobiotics’ concentration, however genetic polymorphisms may play a role in the interindividual variation. There is a number of reports indicating the influence of polymorphisms in the genes of δ-aminolevulinic acid dehydratase (ALAD), the vitamin D receptor (VDR), endothelial nitric oxide synthase (eNOS) on blood lead concentration in lead-exposed workers and environmentally exposed children.
 
REFERENCES (40)
1.
Bal J, Bocian E: Zmienność i dziedziczność (w:) Bal J (ed.): Biologia molekularna w medycynie. Elementy genetyki klinicznej. Wydawnictwo Naukowe PWN, Warszawa 2006: 62-87.
 
2.
Nordberg GF, Gerhardsson L, Broberg K, i wsp.: Interactions in metal toxicology (w:) Nordberg GF, Fowler BA, Nordberg M, Friberg LT (ed.): Handbook on the toxicology of metals (third edition). Elsevier, 2007: 117-143.
 
3.
Agency for Toxic Substance and Disease Registry (ATSDR). Toxicological profile for lead-update. Atlanta:U.S. Department of Health & Human Services, Public Health Service, 2007.
 
4.
Skerfving S: Criteria Document for Swedish Occupational Standards: Inorganic lead – an update 1991–2004 No 2005: 3 National Institute for Working Life 2005, Stockholm 2005.
 
5.
WHO Health risks of heavy metals from long-range transboundary air pollution, Copenhagen 2007.
 
6.
Wetmur JG, Kaya AH, Plewinska M, i wsp.: Molecular characterization of the human δ-aminolevulinate dehydratase 2 (ALAD2) allele: implications for molecular screening of individuals for genetic susceptibility to lead poisoning. Am J Hum Genet 1991; 49: 757-763.
 
7.
Kelada SN, Shelton E, Kaufmann RB, i wsp.: δ-aminolevulinic acid dehydratase genotype and lead toxicity: a HuGe review. Am j Epidemiol 2001; 154: 1-13.
 
8.
Emanuelli T, Pagel FW, Porciuncula LO, Souza DO: Effects of 5-aminolevulinic acid on the glutamatergic neurotransmission. Neurochemistry Inernational 2003, 42.2, 115-121.
 
10.
Kapka L, Pawlas N, Olewińska E i wsp.: Rola genu ALAD w patogenezie szkodliwego działania ołowiu w populacjach dzieci narażonych środowiskowo na ołów – analiza piśmiennictwa. Medycyna środowiskowa 2007; 10: 83-90.
 
11.
Montenegro MF, Barbosa F Jr, Sandrim VC, i wsp.: Ethnicity affects the distribution of delta-aminolevulinic acid dehydratase (ALAD) genetic variants. Clin Chim Acta 2006; 367: 192-5.
 
12.
Ben-Ezzer J, Oelsner H, Szeinberg A: Genetic polymorphism of δ-aminolevulinic acid dehydratase in several population groups in Israel. Hum Hered 1987; 37: 229-32.
 
13.
Scinicariello F, Murray HE, Moffett DB, i wsp.: Lead and δ-aminolevulinic acid dehydratase polymorphism: where does it lead? A meta-analysis. Environ Health Perspect 2007; 115: 35-41.
 
14.
Wetmur JG, Lehnert G, Desnick RJ: The delta-aminolevulinate dehydratase polymorphism: higher blood lead levels in lead workers and environmentally exposed children with the 1-2 and 2-2 isozymes. Environ Res 1991; 56: 109-119.
 
15.
Fleming DEB, Chettle DR, Wetmur JG, i wsp.: Effect of the δ-aminolevulinate dehydratase polymorphism on the accumulation on lead in bone and blood in lead smelter workers. Environ Res 1998; 77: 49-61.
 
16.
Ziemsen B, Angerer J, Lehnert G et al.: Polymorphism of delta- aminolevulinic acid dehydratase in lead-exposed workers. Int Arch Occup Environ Health 1986; 58: 245-247.
 
17.
Sakai T, Morita Y, Araki T, i wsp.: Relationship between delta- aminolevulinic acid dehydratase genotypes and heme precursors in lead workers. Am J Ind Med 2000; 38: 355-360.
 
18.
Suzen HS, Duydu Y, Aydin A, i wsp.: Influence of the delta– aminolevulinic acid dehydratase (ALAD) polymorphism on biomarkers of lead exposeure in Turkish storage battery manufacturing workers. Am J Ind Med 2003; 43: 165-171.
 
19.
Weaver VM, Lee BK, Todd AC, i wsp.: Effect modification by δ-aminolevulinic acid dehydratase, vitamin D receptor, and nitric oxide synthase gene polymorphisms on associations between patella lead and renal function in lead workers. Environ Res 2006; 102: 61-69.
 
20.
Chia SE, Zhou HJ, Tham MT, i wsp.: Association of renal function and δ-aminolevulinic acid dehydratase polymorphism among Vietnamese and Singapore workers exposed to inorganic lead. Occup Environ Med 2006; 63,: 180-186.
 
21.
Kamel F, UmbachDM, Lehman TA, Park LP, Munsat TL, Shefner JM, Sandler DP, Hu H, Taylor JA: Amyotrophic Lateral Sclerosis, Lead and genetic Susceptibility: Polymorphisms in the delta– Amminolevulinic Acid dehudratase and Vitamin D receptor Genes. Environmental Heralth Perspectives 2003, 11, 1335-1339.
 
22.
Rajaraman P, Steward PA, Samet JM, Schwartz BS, Linet MS, Loeffler J, Shapiro WR, Selker RG, Inskip PD: Lead, Genetic Susceptibility, and risk of Adult Tumors. Cancer Epidemio Biomarkers Prev 2006, 15(12) 2514-2520.
 
23.
Olewińska E, Kowalska-Pawlak A, Kozńowska A, i wsp.: Ocena częstości występowania polimorfizmów typu SNP genów kodujących dehydratazę kwasu delta-aminolewulinowego (ALAD) w populacji dzieci z Górnego i Dolnego Âlàska. Medycyna.
 
24.
środowiskowa-Environmental Medicine 2010; 13: 52-59.
 
25.
Chia SE, Huijun Z, Theng TM, i wsp.: Possibilities of newera ALAD polymorphism influencing human susceptibility to effectsof inorganic lead on the neurobehavioural functions. NeuroToxicology 2007; 28: 312-317.
 
26.
Haynes EN, Kalkwarf HJ, Hornung R, i wsp.: Vitamin D receptor Fok1 polymorphism and blood lead concentration in children. Environ Health Perspect 2003; 111: 1665-1669.
 
27.
Schwartz BS, Lee BK, Lee GS, i wsp.: Associations of blood lead, dimercaptosuccinic acid-chelatable lead, and tibia lead with polymorphisms in the vitamin D receptor and δ-aminolevulinic acid dehydratase genes. Environ Health Perpect 2000; 108: 949-954.
 
28.
Gundacker C, Wittmann KJ, Kukuckova M, i wsp.: Genetic background of lead and mercury metabolism in an group of medical students in Austria. Environ Res 2009; 109: 786-796.
 
29.
Lee BK, Lee GS, Stewart WF, i wsp.: Associations of blood pressure and the hypertension with lead dose measures and polymorphisms in the vitamin D receptor and δ-aminolevulinic acid dehydratase genes. Environ Health Perspect 2001; 109: 383-389.
 
30.
Ames SK, Ellis KJ, Gunn SK, i wsp.: Vitamin D receptor gene Fok1 polymorphism predicts calcium absorption and bone mineral density in children. J Bone Miner Res 1999; 15: 740-746.
 
31.
Skoczyńska A: Genetyczne aspekty hipertensyjnego dziańania ołowiu. Med Pracy 2008; 59: 325-332.
 
32.
Napoli C, de Nigris F, Williams-Ignarro S, i wsp.: Nitric oxide and atherosclerosis: an update. Nitric Oxide 2006; 15: 265- 279.
 
33.
Hibi K, Ishigami T, Tamura K, i wsp.: Endothelial nitric oxide syntase gene polymorphism and acute myocardial infarction. Hypertension 1998; 32: 521-526.
 
34.
Hu CJ, Wang CH, Lee JH, i wsp.: Association between polymorphisms of ACE, B2AR, ANP and eNOS and cardiovascular diseases: a community-based study in the Matsu area. Clin Chem Lab Med 2007; 45: 20-25.
 
35.
Borroni B, Rao R, Liberini P, i wsp.: Endothelial nitric oxide synthase (Glu298Asp) polymorphism is an independent risk factor for migraine with aura. Headache 2006; 46: 1575-1579.
 
36.
Oksel F, Keser G, Ozmen M, i wsp.: Endothelial nitric oxide synthase gene Glu298Asp polymorphism is associated with Behcet’s disease. Clin Exp Reumatol 2006; 24 (5 Suppl 42): S079-82.
 
37.
Page A, Reich H, Zhou J, i wsp.: Endothelial nitric oxide synthase gene/gender interactions and the renal hemodynamic response to angiotensin II. J Am Soc Nephrol 2005; 16: 3053-60.
 
38.
Weaver VM, Schwartz BS, Ahn KD, i wsp.: Associations of renal function with polymorphisms in the δ-aminolevulinic acid dehydratase, vitamin D receptor, and nitric oxide synthase genes in Korean lead workers. Environ Health Perspect 2003; 111: 1613-1619.
 
39.
Weaver VM, Schwartz BS, Jaar BG, i wsp.: Associations of uric acid with polymorphisms in the δ-aminolevulinic acid dehydratase, vitamin D receptor, and nitric oxide synthase gene in Korean lead workers. Environ Health Perspect 2005; 113: 1509-1515.
 
40.
Chakraborty BM, Lee HS, Wolujewicz M, i wsp.: Low dose effect of chronic lead exposure on neuromotor response impairmentin children is moderated by genetic polymorphisms. J Hum Ecol 2008; 23: 183-194.
 
eISSN:2084-6312
ISSN:1505-7054