PL EN
PRACA POGLĄDOWA
FUNKCJONOWANIE ORGANIZMU CZŁOWIEKA W WARUNKACH WYSOKOŚCIOWYCH
 
Więcej
Ukryj
1
Zakład Teorii i Metodyki Pływania, Akademia Wychowania Fizycznego, Kraków
 
2
Zakład Medycyny Sportowej, Akademia Wychowania Fizycznego, Kraków
 
3
Zakład Medycyny Fizykalnej i Odnowy Biologicznej, Akademia Wychowania Fizycznego, Kraków
 
4
Zakład Teorii i Metodyki Sportów Wodnych, Akademia Wychowania Fizycznego, Kraków Kierownik Zakładu Teorii i Metodyki Pływania – dr n. kf. M. Strzała
 
 
Autor do korespondencji
Marek Strzała   

Zakład Teorii i Metodyki Pływania Akademia Wychowania Fizycznego ul. Rogozińskiego 12 31-559 Kraków
 
 
Med Srod. 2013;16(4):90-97
 
SŁOWA KLUCZOWE
STRESZCZENIE
Pobyt człowieka na znacznej wysokości – powyżej 2500 metrów nad poziomem morza (n.p.m.) w trakcie kilkunastu godzin powoduje fizjologiczne obciążenie organizmu wywołane hipoksją hipobaryczną. Organizm człowieka narażony jest w warunkach wysokogórskich na wystąpienie dolegliwości określanych ostrą chorobą górską – Acute Mountain Sickness (AMS), której mogą towarzyszyć zagrażający życiu wysokogórski obrzęk mózgu – High Altitude Cerebral Edema (HACE), oraz wysokogórski obrzęki płuc – High Altitude Pulmonary Edema (HAPE). Oprócz tych i innych dolegliwości w tych warunkach towarzyszy człowiekowi obniżenie sprawności fizycznej i mentalnej tym większe im wyższy poziom wejścia nad poziom morza. W dalszej części artykułu przybliżono zmiany związane z wysokościowym obniżeniem wydolności krążeniowo-oddechowej, oraz przebiegiem jej adaptacji, zmianami morfologicznymi wpływającymi na metabolizm energetyczny. Omówiono wybrane aspekty adaptacji hematologicznej, hormonalnej i enzymatycznej wpływającej na usprawnienie metabolizmu energetycznego. Końcowe strony poświęcone zostały na przegląd obserwacji empirycznych dotyczących przygotowania do pobytu i aktywności fizycznej w warunkach wysokogórskich.

Staying at high altitude – above 2500 meters above the sea level during dozens of hours causes physiological strain due to hypobaric hypoxia. In high altitude conditions human body is exposed to disorder syndrome called Acute Mountain Sickness (AMS) which may be accompanied by life-threatening High Altitude Cerebral Edema (HACE) and High Altitude Pulmonary Edema (HAPE). Besides these and other ailments in such conditions human body is exposed to decrease in physical and mental endurance, the stronger the higher altitude is. The article presents changes connected with decrease in cardiovascular and pulmonary endurance, process of their adaptation and morphological changes affecting energy metabolism. Some aspects of hematological, hormone and enzymatic adaptation influencing enhance in energy metabolism are discussed. Final pages are dedicated to review empirical observations relative to preparations to stay and physical activity at high altitude.
 
REFERENCJE (40)
1.
Muza S.: Military applications of hypoxic training for high-altitude operations. Med Sci Sports Exerc 2007; 9: 1625-1631.
 
2.
Karinen H., Peltonen J., Tikkanen H.: Prevalence of Acute Mountain Sickness among trekkers on Mount Kilimanjaro, Tanzania: an observational study. High Altitude Medicine & Biology 2008; 9: 301-306.
 
3.
Lundby C., Calbet J.A., Robach P.: The response of human skeletal muscle tissue to hypoxia. Cell Mol Life Sci 2009; 66: 3615–3623.
 
4.
SiquÝs P., Brito J., Banegas J.R., et al.: Blood pressure responses in young adults first exposed to high altitude for 12 months at 3550m. High Altitude Medicine & Biology 2009; 10: 329-335.
 
5.
Leon-Velarde F. Maggiorini M. Reeves J.T., et al.: Consensus statement on chronic and subacute high altitude diseases. High Altitude Medicine & Biology 2005; 6: 147–157.
 
6.
Wu T., and Kayser B.: High altitude adaptation in Tibetans. High Altitude Medicine & Biology 2006; 7: 193–208.
 
7.
Honigman B., Theis M.K., Koziol-McLain J., et al.: Acute Mountain Sickness in general tourist population at moderate altitudes. Ann Intern Med 1993; 118: 587-592.
 
8.
Baggish A.L., Fulco C.S., Muza S., et al.: The impact of moderate-altitude staging on pulmonary arterial hemodynamics after ascent to high altitude. High Altitude Medicine & Biology 2010; 11: 139–145.
 
9.
Kozłowski S.: Granice przystosowania. Wiedza Powszechna, Warszawa 1986, s. 272-273.
 
10.
Calbet J.A., Robach P., Lundby C.: The exercising heart at altitude. Cell Mol Life Sci 2009; 66: 3601–3613.
 
11.
Dempsey J. A., Wagner P. D.: Exercise-induced arterial hypoxemia. J Appl Physiol 1999; 6: 1997–2006.
 
12.
Calbet J.A.: Chronic hypoxia increases blood pressure and noradrenaline spillover in healthy humans. J Physiol 2003; 551. 1: 379–386.
 
13.
Calbet J.A.: Oxygen tension and content in the regulation of limb blood flow. Acta Physiol Scand 2000; 168: 465- 472.
 
14.
Wagner P.D., Araoz M., Boushel R., et al.: Pulmonary gas exchange and acid-basestate at 5, 260 m in high-altitude Bolivians and acclimatized lowlanders. J Appl Physiol 2002; 92: 1393–1400.
 
15.
Essop M.F.: Cardiac metabolic adaptations in response to chronic hypoxia. J Physiol 2007; 584. 3; 715–726.
 
16.
McClelland G.B., Brooks G.A.: Changes in MCT 1, MCT 4, and LDH expression are tissue specific in rats after long-term hypobaric hypoxia. J Appl Physiol 92: 1673- 1584.
 
17.
Van Hall G., Calbet J.A., SŅndergaard H., Saltin B.: The re-establishment of the normal blood lactate response to exercise in humans after prolonged acclimatization to altitude. J Physiol 2001; 536. 3:. 963–975.
 
18.
Vogt M., Hoppeler H.: Is Hypoxia Training Good for Muscles and Exercise Performance? Prog Cardiovasc Dis 2010; 52: 525-533.
 
19.
Angermann M., Hoppeler H., Wittwer M.: Effect of Acute Hypoxia on Maximal Oxygen Uptake and Maximal Performance during Leg and Upper-Body Exercise in Nordic Combined Skiers. Int J Sports Med 2006, 27: 301-306.
 
20.
Robergs R.A., Quintana R., Parker D.L., et al.: Multiple variables explain the variability in the decrement in VO2max during acute hypobaric hypoxia. Med Sci Sports Exerc 1998; 30: 869-879.
 
21.
Ferretti G.: Limiting factors to oxygen transport on Mount Everest 30 years after: a critique of Paolo Cerretelli’s contribution to the study of altitude physiology. Eur J Appl Physiol 2003; 90: 344–350.
 
22.
Howald H., Hoppeler H.: Performing at extreme altitude: muscle cellular and subcellular adaptations. Eur J Appl Physiol 2003; 90: 360–364.
 
23.
Gelfi C., De Palma S., Ripamonti M.: New aspects of altitude adaptation in Tibetans: a proteomic approach. FASEB J. 2004; 3: 612-614.
 
24.
Kayser, B., Hoppeler H., Desplanches, D., et al.: Muscle ultrastructure and biochemistry of lowland Tibetans. J Appl Physiol 1996, 81: 419-425.
 
25.
Mizuno M., Savard G.K., Areskog N.H., et al.: Skeletal Muscle Adaptations to Prolonged Exposure to Extreme Altitude: A Role of Physical Activity? High Altitude Medicine & Biology 2008; 9: 311–317.
 
26.
Kayser B.: Nutrition and high altitude exposure. Int J Sports Med 1992; 13: 129–132.
 
27.
Imoberdorf R., Garlick P.J., MCnurlan M.A., et al.: Skeletal Muscle Protein Synthesis after Active or Passive Ascent to High Altitude. Med Sci Sports Exerc 2006; 6: 1082–1087.
 
28.
Robach P., Fulla Y., Westerterp K.R., Richalet J.P.: Comparative response of EPO and soluble transferrin receptor at high altitude. Med Sci Sports Exerc 2004; 36: 1493-1498.
 
29.
Mierzwa G., Augustyńska B., Czerwionka-Szaflarska M., et al.: Iron status with particular consideration of soluble transferring receptors of children and youth with gastric with or without Helicobacter pylori infection. Polski Merkuriusz Lekarski, 2006; 21: 235-238.
 
30.
Beguin, Y.: The soluble transferrin receptor: biological aspects and clinical usefulness as quantitative measure of erythropoiesis. Haematologica 1992; 77: 1–10.
 
31.
Lundby C., Calbet J. A., Robach P.: The response of human skeletal muscle tissue to hypoxia Cell Mol Life Sci 2009; 66: 3615–3623.
 
32.
Gore CJ, Clark SA, Saunders PU. Nonhematological mechanisms of improved sea-level performance after hypoxic exposure. Med Sci Sports Exerc 2007; 39: 1600-1609.
 
33.
Zoll J., Ponsot E., Dufour S., et al.: Exercise training in normobaric hypoxia in endurance runners. III. Muscular adjustments of selected gene transcripts. J Appl Physiol 2006; 100: 1258-1266.
 
34.
Hochachka P.W.: The lactate paradox: analysis of underlying mechanisms. Annals of Sports Medicine 1988; 4: 184– 188.
 
35.
Beidleman B.A., Muza S.R., Rock P.B., et al.: Exercise responses after altitude acclimatization are retained during reintroduction to altitude. Med Sci Sports Exerc 1997; 12: 1588-1595.
 
36.
Muza S.R., Beidleman B.A., Fulco C.S.,: Altitude Preexposure Medicune & Biology 2010; 11: 87-92.
 
37.
Schneider M.D., Bernasch J., Weymann R., et al.: Acute mountain sickness: influence of susceptibility, preexposure and ascent rate. Med. Sci. Sports Exerc 2002; 12: 1886– 1891.
 
38.
Rusko H., Leppavuori P., Makla P., Leppaluoto J. Living high, training low. A new approach to altitude training at sea level in athletes (Supplemental Abstract). Med Sci Sports Exerc 1995; 27: 6.
 
39.
Rodriguez F.A., Ventura J.L., Casas M., et al.: Erythropoietin acute reaction and haematological adaptations to short, intermittent hypobaric hypoxia. Eur J Appl Physiol 2000; 82: 170-177.
 
40.
Vogt M., Puntschart A., Geiser J., et al.: Molecular adaptations in human skeletal muscle endurance training under simulated hypoxic conditions. J Appl Physiol 2001; 91: 173-182.
 
eISSN:2084-6312
ISSN:1505-7054
Journals System - logo
Scroll to top